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1 Introduction

The LIGO Newtonian Calibrator was designed with two different mass config-
urations, a quadrupole and a hexapole, with the goal of using the ratio of the
forces caused by the two configurations to measure the radial distance. The
gravitational interaction between the rotor and the test mass strongly depends
on the radial distance between the two. Thus the hope was that the measured
ratio would yield a low uncertainty measurement of this distance which could
then decrease the overall uncertainty on the expected force. For the injections
in O3 [1], this method was not used but instead precise surveying was used to
determine the coordinates of the rotor.

The goal of this analysis was to determine if the ratio method can surpass
the performance of the surveying. The ”ratio method” is the procedure of using
the measured ratio of the 2f and 3f forces caused by the NCal to estimate the
radial distance. While ”surveying” is using a surveying machine to measure the
coordinates independently.

As a disclaimer, all uncertainties were assumed to be Gaussian
and the uncertainties were propagated analytically. The numerical
values of a rigorous analysis may differ from what’s found here but
the general results should still hold.

2 Surveying

The survey is done in Cartesian coordinates and gives a rotor position of:

x = −722.8 mm+2.6mm
−2.6mm (1)

y = −933.0 mm+1.6mm
−1.6mm (2)

z = 10.0 mm+3.0mm
−3.1mm (3)

We want to transform to spherical coordinates since the ratio will give the
radial distance. We’ll treat the error bars as symmetric and take the largest of
the two as the σ value.

1



The surveyed spherical coordinates are:

ρ = 1180.3 mm± 2.0 mm (0.17%) (4)

θ = 89.51 deg± 0.15 deg (0.17%) (5)

φ = −127.77 deg± 0.11 deg (0.09%) (6)

So the surveying yields a radial distance measurement with 0.15% precision.
This is what the ratio method must surpass for us to want to use it.

3 Ratio Method

Lets write down what the force equations look like. Since the interferometer can
only measure the x-component of the force, we will restrict ourselves to only
the amplitude of the x-component. We will work in spherical coordinates where
origin is at the center of mass of the test mass. The force at 2f and 3f follow:

F x
2f =

9

2

GMmr2q
d4

f2(θ, φ) (7)

F x
3f =

15

2

GMmr3h
d5

f3(θ, φ) (8)

where G is the gravitational constant, M is the mass of the LIGO test mass,
m is the mass of the tungsten slugs, rq is the quadrapole radius, rh is the
hexapole radius, d is the radial distance between the NCal and the test mass, θ
and φ are the polar and azimuthal coordinates, and f2 and f3 are the angular
dependence of the quadrupole and hexapole signals.

Taking the ratio of these two yields:

F x
2f

F x
3f

=
9

15

r2q
r3h

f2(θ, φ)

f3(θ, φ)
d (9)

This can be rearranged to give:

d =
15

9

F x
2f

F x
3f

r3h
r2q

f3(θ, φ)

f2(θ, φ)
(10)

Let’s define three ratios as follows:

R =
F x
2f

F x
3f

(11)

r =
r3h
r2q

(12)

A =
f3(θ, φ)

f2(θ, φ)
(13)
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d =
15

9
RrA (14)

We’ll analyze each of these separately and combine them at the end to yield
a measurement of the radial distance.

3.1 r

Since we know the geometry of the rotor with high precision, we expect that
r will not contribute much uncertainty but let’s calculate it for completeness.
Pulling the rq and rh values and uncertainties from [1] gives:

r = 316.06 mm± 0.07 mm (0.022%) (15)

Note that this is the only factor which has units since it is a distance cubed
over a distance squared.

3.2 R

R must be measured with the interferometer during two runs where the 2f
frequency overlaps the 3f frequency. The current study[1] has one measurement
like that right now at 15.5 Hz which yielded F x

2f = 19.59 pN ± 0.29 pN and
F x
3f = 9.16 pN± 0.45 pN. Combining this gives:

R = 2.139± 0.079 (3.67%) (16)

This is not the end of the story since in the future we can inject the signals
for longer and get lower statistical uncertainty. The current measurements are
only for 2 minutes and we can expect the uncertainty to fall like 1/

√
time. If

we project this out to a 60 hour measurement we get:

R60 = 2.139± 0.0019 (0.087%) (17)

Which would be much below the uncertainty that is achieved with the surveying.

3.3 A

A is a bit harder to determine. Since the functional form of the angular depen-
dence is not known, we have to rely on our force simulations to extract the ratio
of the angular dependencies.

To do this, we calculate the 2f and 3f force distributions while only varying
θ and φ. Since our code only gives us the force amplitudes, we need to correct
the predicted force ratio with the input radial distance, d̃, and quadrupole and
hexapole radii, r̃q and r̃h, to get only the angular dependence.

f3(θ, φ)

f2(θ, φ)
=

9

15

r̃2q
r̃3h
d̃
F predicted
3f

F predicted
2f

(18)
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This is evaluated numerically using the Multipole method [1] in the script
NCal Angular.py. We take the mean and standard deviation of the output
distribution, Figure 1, as the central value and σ value for A.

A = 1.060± 0.002 (0.1434%) (19)
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Figure 1: Distribution of A evaluated with the Multipole method developed for
the NCal force predictions.

3.4 Combining

These three contributions can be combined to yield an estimate for the radial
distance and uncertainty via:

d =
15

9
RrA (20)

σ2
d = d2

(
σ2
R

R2
+
σ2
r

r2
+
σ2
A

A2

)
(21)

The current measurements gives us:

d = 1.194 m± 0.044 m (3.67%) (22)

If we measured for 60 hours at each frequency (total of 120 hours of mea-
surement) we would get:
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d60 = 1.194 m± 0.002 m (0.17%) (23)

4 Comparison

We showed above that the ratio method can yield a lower uncertainty mea-
surement of the radial distance after sixty hours of injection. Lets quantify the
crossing point better and look at the infinite measurement time of the ratio
method. Figure 2 shows the decrease in radial distance uncertainty using the
ratio method over time as well as the current surveying performance and the
precision that was originally assumed for the surveying, 1 cm uncertainty.
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Figure 2: Uncertainty vs. measurement time for the ratio method. Also shown
is the uncertainty of the current surveying and surveying with 1 cm precision.

The ratio method crosses over the surveying after 56 hours. This would
require 112 hours of actual measurement since the two frequencies have to be
injected at different times.

The infinite measurement limit of the ratio method can be calculated by
setting σR = 0. This yields a radial distance of:

d∞ = 1.1938 m± 0.0017 m (0.15%) (24)
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5 Conclusion

This analysis has shown that the ratio method can be used to determine the
radial distance better than the surveying, and thus decrease the systematic
uncertainty of the NCal calibration, after about 56 hours. True measurement
time would be double this since we need two different injections to get the 2f
and 3f to be at the same frequency.

In the limit of infinite measurement time the ratio method is constrained
to an accuracy of approximately 0.15 %. This is dominated by the surveying
precision of θ and φ which is unlikely to significantly improve in the current
geometry.

Other geometry, such as aligning the NCal rotor with the interferometer
beam, may allow for lower uncertainties on radial distance extracted with the
ratio method. However, surpassing the performance of the current surveying is
a tall order do to the long measurement times.
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