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Abstract

This document describes the contents of trigger data files for O3a events presented
in the GWTC-2 catalog of compact binary mergers [1] observed by LIGO [2] and
Virgo [3], generated by the PyCBC [4, 5, 6] and GstLAL [7, 8, 9] searches.



1 Trigger Files

The triggers are stored in the HDFS5 file format [10] in the files listed below.

GW190521_triggers_gstlal.hdf5

The GstLAL trigger with the maximum signal-to-noise ratio originally
published in [11]. Note that in [11], the sub-threshold signal-to-noise ratio
from Virgo was not included, while it is in Table IV of [1]. The minimum false
alarm rate trigger for GW190521 was obtained in a different template, and
this trigger is recorded in the 03a_triggers_gstlal.hdf5 file.

03a_triggers_gstlal.hdfb
03a_triggers_pycbc.hdf5

Triggers produced by the GstLAL and PyCBC searches over the first half of the
third observing run (O3a) of Advanced LIGO and Advanced Virgo, which took
place from 2019-04-01 to 2019-10-01.

03a_triggers_pycbc_bbh.hdf5
Triggers produced by the PyCBC binary black-hole focused search over the

first half of the third observing run (O3a) of Advanced LIGO and Advanced
Virgo, which took place from 2019-04-01 to 2019-10-01.



2 Datasets

Each file contains a subset of the following datasets. These datasets contain triggers
that were found with false alarm rates below the threshold of 2 per year as measured
by their respective search. Each dataset in a file will contain values indexed by an
ordinal trigger number. The datasets all have the same length. If data is missing for
a particular trigger in one of the datasets, for example, if a trigger is produced in H1
and L1 data but not in V1 data, then the value in the dataset for which there is no
value for that trigger index will be set to NaN. A description of the dataset contents
is provided below.

false_alarm_rate

The rate of false alarms (year™!) expected above the trigger ranking statistic.
See [6] for PyCBC and [7] for GstLAL. Note: for GstLAL, a prior distribution
(a power law distribution in signal-to-noise ratio with a large negative
exponent) is assumed for the background distribution where no measurable
background is available; consequently, the false alarm rate value assigned to
highly significant signals in the GstLAL search is determined by this prior
distribution [12].

h1_chisq
Signal consistency test value x? (PyCBC) or £2 (GstLAL) for the trigger in H1.
For GstLAL this quantity is given by Eq. (4) of [7]. Note that this is a reduced
quantity so there is no h1_chisq_dof dataset for GstLAL (treat as 1).
For PyCBC this quantity is given by Eq. (7.10) of [13]; see also Eq. (9.4) and
(C1) of [14].

h1_chisq_dof (PyCBC Only)
Degrees of freedom associated with the x? test for the trigger in H1. See
Eq. (7.11) of [13].

h1_end_time
GPS time (seconds since 1980-01-06T00:00:00Z) of the trigger coalescence
time in H1. See Eq. (3.2) and Eq. (8.14a) of [14] where it is called the
termination time.

h1_sigmasq (PyCBC Only)
The value of the variance of the matched filter for a template signal at effective
distance of 1 Mpc in H1. See Eq. (4.3) and Eq. (8.8) of [14].
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hi_snr
Signal-to-noise ratio of trigger in H1. See Eq. (4.4b) and (8.12) of [14].

11_chisq
Signal consistency test value x2 (PyCBC) or &2 (GstLAL) for the trigger in L1.

For GstLAL this quantity is given by Eq. (4) of [7]. Note that this is a reduced
quantity so there is no 11_chisq-dof dataset for GstLAL (treat as 1).

For PyCBC this quantity is given by Eq. (7.10) of [13]; see also Eq. (9.4) and
(C1) of [14].

11_chisq_dof (PyCBC Only)
Degrees of freedom associated with the x? test for the trigger in L1. See
Eq. (7.11) of [13].

11_end_time
GPS time (seconds since 1980-01-06T00:00:00Z) of the trigger coalescence
time in L1. See Eq. (3.2) and Eq. (8.14a) of [14] where it is called the
termination time.

11_phase_minus_h1_phase
Difference between twice the termination phase of the trigger in L1 and twice
the termination phase of the trigger in H1 (radians). See Eq. (3.2) and
Eq. (8.14a) of [14] for the definition of termination phase.

11_sigmasq (PyCBC Only)
The value of the variance of the matched filter for a template signal at effective
distance of 1 Mpcin L1. See Eq. (4.3) and Eq. (8.8) of [14].

11_snr
Signal-to-noise ratio of trigger in H1. See Eq. (4.4b) and (8.12) of [14].

log-likelihood_ratio (GstLAL Only)

The natural log of the likelihood ratio used as the GstLAL trigger ranking
statistic. See Eq. (9) of [7]. Note that the distributions used in forming the
numerator and denominator are not normalized, so the
log-likelihood_ratio has an unspecified constant offset.

mass 1

Primary detector-frame mass m; (Mg) of the template signal.

mass?2

Secondary detector-frame mass my (Mg) of the template signal.
spiniz

Primary z-component of spin cL - Sl/(Gm%) (dimensionless) of the template

signal where L is the unit vector in direction of the orbital angular momentum
vector and S; and m are the spin vector and the mass of the primary
component. The templates used had spin vectors aligned with the orbital
angular momentum vector.



spin2z
Secondary z-component of spin cL - Sz/(Gmg) (dimensionless) of the template
signal where L is the unit vector in direction of the orbital angular momentum

vector and S and m are the spin vector and the mass of the secondary
component. The templates used had spin vectors aligned with the orbital
angular momentum vector.

v1_chisq (GstLAL Only)
Signal consistency test value &2 (GstLAL) for the trigger in V1.
This quantity is given by Eq. (4) of [7]. Note that this is a reduced quantity so
there is no v1_chisq_dof dataset (treat as 1).

vi_end_time (GstLAL Only)

GPS time (seconds since 1980-01-06T00:00:00Z) of the trigger coalescence
time in V1. See Eq. (3.2) and Eq. (8.14a) of [14] where it is called the
termination time.

v1_phase_minus_h1_phase (GstLAL Only)
Difference between twice the termination phase of the trigger in V1 and twice
the termination phase of the trigger in H1 (radians). See Eq. (3.2) and
Eq. (8.14a) of [14] for the definition of termination phase.
v1_phase_minus_11_phase (GstLAL Only)
Difference between twice the termination phase of the trigger in V1 and twice
the termination phase of the trigger in L1 (radians). See Eq. (3.2) and
Eq. (8.14a) of [14] for the definition of termination phase.
v1_snr (GstLAL Only)
Signal-to-noise ratio of trigger in V1. See Eq. (4.4b) and (8.12) of [14].



3 Tutorial

The following Python code tutorial.py demonstrates how to read the trigger files
and prints out certain information about the triggers.

import h5py

# open trigger file
fname = '03a_triggers_pycbc.hdf5'
trigger_set = hbpy.File(fname, 'r')

# print the properties of the most significant triggers
print('Properties of most significant triggers in file {0}'.format(fname))

for i, far in enumerate(trigger_set['false_alarm_rate']):

# only consider triggers with false alarm rate < 1/year
if far < 1.0:

print('")

print('Trigger number {0}:'.format(i))

# print all the properties of the found triggers
for key in trigger_set.keys():
print('... {0}: {1}'.format(key, trigger_set[key][i]))
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