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1 Introduction

Gravitational, or “Newtonian,” absolute force references (“calibrators”) for gravitational
wave detectors have been built for all 2nd generation detectors in the global network e.g.
[1, 2, 3]. A dominant contribution to uncertainty and potential systematic error in the force
from these systems comes the distance between the center of rotation of the calibrator and
the detector’s test masses (shown, e.g. analytically in [4]). The LIGO NCAL system, [1], was
originally designed to use the ratio of its quadrupole and hexapole forces to independently
determine this distance to high precision. However, as described in [5], this method relies
on knowledge off-axis the location of the NCAL w.r.t. the test mass, and to reduce the
estimate’s uncertainty to the desired ∼0.1% level relies on impractically long integration
time.

In this note we summarize the method used in the final analysis of [1] for determining,
−→
TC,

the three-dimensional vector distance between of the LIGO test mass and the NCAL system’s
center of rotation, via surveying, CAD model analysis, and vector coordinate transforma-
tions. The final results are in the form of numerical evaluated probability distributions of
this distance vector, as the raw measured values used (each with uncertainty bounds) must
be propagated through non-linear, trigonometric and vector calculations.

The final, numerically evaluated, probability distributions for components of this distance

vector,
−→
TC are not Guassian in character, and should not be treated as such. The results

presented below are just a human stopping point for sanity checks and conversation. The
stopping point is only a part of the whole numerical process of estimating the 2f and 3f
force from the NCAL system described in [1]. However, for the purpose of conversation
(and future design consideration), the median of the probability distribution is taken to be
the component values, and the upper and lower 1-, 2-, and 3-σ percentile bounds of the
distribution are quoted as “uncertainty.”

In cartesian coordinates aligned with the LIGO global coordinate system, the components

of
−→
TC are:

−→
TC = 722.8+2.48

−2.50 x̂+ 933.0+1.54
−1.52 ŷ + 10.0+2.98

−2.97 ẑ (1)

where dimensions are reported in millimeters, and only the 1-σ upper and lower percentile
bounds are shown here for brevity. Section 4 of the document presents histograms of the
distributions, and all three 1-, 2-, and 3-σ percentile bounds. Evaluating the answer in terms
of polar coordinates, traditionally used in analytic calculations of the force, yields

−→
TC = 1180.2+2.37

−2.38 ρ̂+ 52.2+0.08
−0.08 Φ̂ + 10.0+2.98

−2.97 ẑ (2)

where the ẑ component is perpendicular to with LIGO global coordinate system’s x̂ŷ plane
(and thus parallel with its ẑ direction), and the polar radius ρ̂ =

√
(x2 + y2) lies on that

plane. Φ is defined in the “+RZ” direction with a right-handed rotation about ẑ, (i.e.
counter-clockwise, if looking down from above the test mass - NCAL system), and Φ = 0
deg is defined from the −x̂ direction. ρ̂ and ẑ values are reported in millimeters, Φ is reported
in degrees. See Figure 1 for graphical representation.

This remainder of this document is organized as follows. Section 2 introduces the raw mea-
surements and their uncertainty that have been used to arrive at the numerically evaluated
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Figure 1: Top-down view of a CAD rendering of the NCal and test mass system. The
NCal is shown without its enclosing frame, shell, or motor for clarity. The test mass is
shown inside its large vacuum chamber with all suspending elements and other surrounding
elements similarly removed. The detector’s interferometric laser resonating within the X-arm
cavity is shown as it would be, ideally, in full operation. The distance vector, ~d, between
the NCal center of rotation and Test Mass Center of Mass ~d is indicated in blue, as well
as its angle with respect to the x̂, interferometer beam, direction – the only component of
the NCal force that is measured. While not represented well in this rendering for clarity, in
reality, the NCal x̂ŷ-plane is slightly above of the x̂ŷ-plane centered on the vertical center
of mass of the test mass, and the interferometer beam is not perfectly centered on the front
surface.

answer. Section 3 reviews the mathematics needed to convert those raw measurements into
the distance vector shown above. Section 4, again, shows the above answer in more complete
detail. Section 5 discusses the accuracy and validation of the CAD assembly model of the
NCAL system used within this analysis to “measure” the distance between the inaccessi-
ble/invisible center of rotation of the NCAL and the accessible/visible external frame of the
NCAL system. Finally, Section 6 points to and describes the code used to perform this
numerical evaluation.

2 Key Measurements

There exists a constellation of positional references build in to the concrete floor of the
experimental hall of the X end-station’s vacuum enclosure area (EX VEA), as shown in 2.
The X-Y positions of these monuments are known to within ±0.2 mm with respect to the
reference of the global interferometer coordinate system origin at the end-station – the “gold
standard monument” BTVE-8, set during the initial construction of the facility. There a
few other, similar monuments that serve as vertical, Z, position references known to similar
accuracy (not shown in Figure 2).
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Figure 2: Rough locations of the constellation of global X-Y position monuments in the H1
EXVEA, with respect to the chamber, test mass, and NCAL.

Both the Test Mass and the NCAL positions are measured w.r.t. these monuments refer-
encing the global coordinate system.

Unfortunately, what positions we truly wish to measure, the X, Y, Z position of

• the center of mass of the test mass, and

• the center of rotation of the NCAL in the plane of disc’s vertical center of mass

are both enclosed in their respective vacuum or protective chambers and are invisible to sur-
veying equipment. This makes determining a critical parameter in the NCAL force estimate,
~d – the X, Y, and Z (or ρ, Φ, and Z) distance between the test mass CoM and the NCAL
center of rotation – a challenge via surveying.

Studies of the position, surveying method, and uncertainty analysis, were all done between
Oct 2019 and Oct 2020:

• after the ETMX test mass was replaced (in 2018) and enclosed its vacuum chamber
having not been surveyed since its initial installation in 2014.

• when person power and time with the detector were severely limited by the O3 observ-
ing run (until Mar 2020), and

• then any potential further measurements limited by the COVID19 pandemic.

As such, we’re stuck with interpreting the 2014 surveyed global position of the ETMX test
mass, and surveyed global position of the rigid external frame of the NCAL system in its as-
built location in X Y and Z. Only three points of a single side of the frame were measured,
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because line-of-sight views of the NCAL system after installation are very limited in the
crowded EX VEA.

However, from these survey measurements, we use a SolidWorks CAD model of the NCAL
system (whose dimensions were verified by physical measurement during construction and
assembly of the NCAL system in 2019), and vector coordinate transformation geometry, to
propagate the surveyed measurements of the frame (and their uncertainty) to the NCAL’s
center of rotation. Figure 3 summarizes the order of operations described in this document,
wherein we combine several measurements of surveyed positions, in concert with manufac-
turer’s drawings, to determine ~d.
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Figure 3: Isometric diagram of the total station’s set up with respect to the Test mass and
the NCAL.

Because the calculations to produce the NCAL position are non-linear (i.e. they use trigono-
metric functions and vector algebra), all uncertainties of calculated distance values within
the NCAL to Test Mass distance estimate are derived from numerically evaluating the cal-
culation with samples of a distribution of raw input values. All raw input uncertainty has
been derived from manufacturer’s spec, or educated guess at possible limits of the value, and
thus the sampled probability distribution we use to represent them are defined by the central
value of the measured position or specified dimension and a uniform (equal) probability of
parameter / measurement values between the upper and lower bounds of any raw input to
the calculation. Once the numerical evaluation is complete, we characterize posterior distri-
bution using median (50th percentile) as the new calculated answer, and the 1, 2, and 3 σ
percentiles (i.e. the 15.9 and 84.1, 2.3 and 97.7, and 0.2 and 99.8 percentiles) as is common
practice to arrive at numbers for use in verbal discussion of the answer. It is worth empha-
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sizing: all values and uncertainties – from the first, low-level calculations with this these raw
input values all the way up to the final force estimates produced by the NCAL system – are
numerically evaluated using sampled distributions of input parameters. Any intermediate
product’s stated value and quoted uncertainty is used only to aide intuition and discussion.

Sub-section 2.1 covers the basic principles of surveying, and how global XYZ coordinates are
derived from the instrument’s raw measurements. Sub-section 2.2 reports the position of the
test mass, and discusses its numerically evaluated uncertainty, given “best guess” assessment
of the uncertainty in the 2014 survey of its position. Sub-section 2.3 goes in to more detail
about the process of surveying and its uncertainties given that we had more access and more
knowledge about the measurement process and reports the results of measuring three points
on the rigid frame of the NCAL. Sub-section 2.4 covers the position of the center of rotation
w.r.t. to the key external surveyed point on the rigid frame of the NCAL.

2.1 Review of Surveying Technique

In order to survey the position of some new thing within the constellation of monuments at
the end-station, one must first set up and establish the position of the total station within
that constellation. This is done in a several step process using a 2011 Sokkia Total Station,
SET 1X model:

1. Align the tripod of the station over nearest monument to the desired thing. The total
station is thus said to “occupy” this monument.

2. Given that tripod sets the total station human height (∼1 m) above the monument, a
plum-bob is used ensure the station’s XY position is precisely aligned with the cross-
hairs scribed into surface of monument (which is flush with the building floor). The
quoted precision of this process is ±0.2 mm.

3. The total station, now positioned in the XY coordinates, is then aligned w.r.t the XY
axes of the global coordinate system by defining the horizontal rotation angle, θH ,
where θH = 0 is defined to be towards a “back sight” monument, some distance away
(in the EXVEA’s case, the distance is of order 5-10 m) with the optical scope element
within the total station, which has sight-guiding cross-hairs. The uncertainty in this
report of angular position is ±1 arcsec, set by the manufacturer’s spec matching optical
cross-hairs to reported θH (see T1100054, under “Angle Measurement,” : “Accuracy”
: “SET1X model” used on page 8).

4. Finally, The total station’s vertical Z position is set w.r.t. a known height monument.

From this point, the X, Y, and Z position, and it’s alignment w.r.t. to the horizontal axes is
known. The vertical angle, θV is defined by local gravity, with θV = 0◦ at the zenith (straight
up).

From this now precisely defined position, one uses another, two-step process to “sight” the
desired position of the new thing.
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1. The total station is on a 2-axis gimble. After setting the gimble locations for θV =
θH = 0◦, one rotates the total station in the direction of the new thing or position to
be measured, and reads off the reported total station values of θV and θH position with
the operator aligning to the new position using the same cross-hairs within an optical
scope (similar to θH , θV also has a manufacturer’s spec of ±1 arcsecond). +θH reads
out angles clock-wise from above, and is thus unfortunately a left-handed reading with
respect to the x̂ direction.

2. Then, an optical prism with finite, well-known dimensions, is used as a retro-reflector
(whose contact with the thing / position to be measured has a well-defined relationship
to the apparent reflection surface; see details in supporting document T2100262), and
held against the point of the thing to be surveyed. With the retro-reflective element
aligned back at the total station. The total stations’s distance, S, to that new point, is
measured via laser Doppler ranging and reported. The uncertainty ± 2 mm, according
to the manufacturer’s spec (see T1100054, under “Distance Measurement,” : “Accu-
racy” : “With prism Fine Mode” on page 8, which quotes (2 + 2ppm x D) mm, and
since D – the distance – is on the order of 10 m or less, we ignore the additional ppm
uncertainty that accumulates with distance.)

Armed with S, θH , θV , (and their uncertainty), one can then use trigonometry to obtain the
XYZ position, Sx, Sy, and Sx of the newly measured point.

Sx = S sin θV cos (2π − θH) (3)

Sy = S sin θV sin (2π − θH) (4)

Sz = S cos θV (5)

where θH is defined within the trigonometric as −θH or equivalently 2π− θH because of the
position of the NCAL system w.r.t. Total Station in our setup, and because the total station
defines +θH in the clockwise-as-viewed-from-above direction.

Of course, if one needs, these XYZ positions are still tied to the occupied monument; to get

the relationship between the new surveyed position,
−→
P , w.r.t. the global IFO origin

−→
O , one

must add the position of the monument,

−→
OP =

−−→
OM +

−→
S (6)

2.2 Test Mass Center of Mass Position

The position of the test mass center of mass,
−→
T is reported in the IFO’s global coordinate

system origin as
−→
OT , 4 km away, in the center of the vacuum chamber of the Beam Splitter,

−→
OT ≡

−−→
OM +

−→
T = OTxx̂+OTyŷ +OTz ẑ (7)

with the values used for OTx, OTy, and OTz listed in Table 1.

The starting values in arriving at OTx, OTy, and OTz in table 1 are informed by surveying
the position of the highly-reflective (HR) “front” surface of the test mass, in-air, w.r.t. to
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OTx [mm] OTy [mm] OTz [mm]
3999584.9 -200.3 -80.4

Table 1: Components of the position vector between the ETMX center of mass and the
origin of the IFO global coordinate system.

the monument constellation at the end station. We collect these starting values from the
“actual” column of the 2014 document E1400205, i.e. 3999485.0, -200.3, -80.0 [mm].

However, we augment this position in two ways:

1. propagate the x̂ component to the center of mass using the test mass drawing in
D0902455 and D080658, which indicate the x̂ distance between the HR surface and the
center of mass is 99.9 mm, and

2. because the test mass was surveyed in-air, supported by the buoyancy of air, we also
decrease the Z position by 0.4 mm as per calculations in T1100616.

The uncertainties in these values are discussed below.

2.2.1 Tess Mass HR Surface Surveying Uncertainty

The procedure for arriving at the results in E1400205 is described in great detail under
Section 7 of E1200952, but in short: after the test mass was installed and freely suspended
in its final location, the total station was aligned on a monument “in front of” the test mass
(occupying IAM-EX-T2 in Figure 2), and

• the longitudinal position of the test mass (along the global X axis) is determined with
an optical prism affixed to the surrounding suspension cafe at a known distance away
from the test mass HR surface and used as described in Step 2 of Section 2.1.

• the transverse (Y) and vertical (Z) positions were determined by the average of the
positions of the left / right and top / bottom bottom of the optic, respectively.

Figure 4 shows a SolidWorks CAD rendering of the retro-reflector used for the measurement,
stolen from Figure 4 of E1200952.

 LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY 

ALIGO INITIAL ALIGNMENT PROCEDURE 
E1200952 -v6- 
Document No Rev. 
Sheet 9 of 22 

WBSC9 As Built 
 

 

Note: This is the old retro-reflector assy; need D# for new assy 
Accuracy: ± 0.2 mm 

Procedure:  

� Attach the retro-reflector assembly to the quad structure in front of the ETM HR face 
� Use the depth gauge to measure the offset distance from the retro-reflector assembly 

reference plate (square plate behind corner cube retro-reflector) to the ETM HR face.  Do 
this on the right and left side of the plate and average two values to get the offset distance. 

Take care to clean the depth gauge, especially the contact feature.  Contact the optic either 
on the outer perimeter of the HR face where there is no First Contact ™ film or in the interior 
but only on the First Contact™ film and be sure to contact very gently. 

� Record the Offset (X-distance) 

Offset distance from the ETM HR face 
to the Reflecting Plane of the Retro-
reflector 

43.6 mm 

  

 
Figure 4: Retro-reflector Assembly attached to Quad Suspension Structure 

Figure 4: Solidworks assembly of retro-reflector assembly attached to the test mass suspen-
sion cage structure.
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Unfortunately, due to the invasive nature of the measurement, surveying was not repeated
when the test mass replaced in 2018. Any change in position or uncertainty that is missing
as a result of this fact is discussed in the context of these values uncertainty below.

E1400205 does not report uncertainty in the test mass position. The “error” column is the
difference between the ideal position of the test mass and its measured position, and the
“tolerance” indicates how large an error can be tolerated.

The uncertainty in the test mass position is taken to be the “accuracy” stated in the mea-
surement procedure (E1200952):

• ± 3 mm for the longitudinal direction (global X in this case),

• ± 1 mm for the transverse (global Y), and

• ± 1 mm for the vertical (global Z).

Since the derivation of these uncertainties are unclear, we compare these against our intuition
as a sanity check. The longitudinal uncertainty is consistent with the manufacturer’s spec of
±2 mm in Doppler ranging, plus, say, an additional 1 mm added to each side of the bound
to account for any uncertainty in positioning the retro-reflector on the cage w.r.t. the HR
surface. The transverse / vertical uncertainty much larger than “just” the ± 1 arcsecond
manufactorer’s spec, at radial distance from the Monument / total station position ∼ 6 m
away, but we accept the additional uncertainty do to the unknown level of reproduction in
the position of the test mass after being replaced.

2.2.2 Tess Mass Thickness Uncertainty

The uncertainty on the distance between the HR surface and the center of mass (99.9 mm),
has been taken from the drawings of the test mass, assuming they’ve been build to spec.
Thus, from D080658, we take the larger of the two manufacturing specifications on the
assigned thickness, 2000.5

−1.0, and thus assign a ±1.0 mm uncertainty. We do not divide the
uncertainty by 2 (as has been done with the thickness to arrive at the distance between HR
surface and CoM) as a conservative allowance for greater uncertainty in the longitudinal
position of the CoM.

2.2.3 Tess Mass Vertical Position Adjustment due to Buoyancy Uncertainty

From T1100616, we see that 0.4 mm “sag” is computed from the dynamical model of the
quadruple pendulum without uncertainty (see TM Sag in orange in the bottom right of the
table in section 4.1). However, we see the corresponding top mass position in the section 4.1
table has both model and measurement via position sensors. Summarizing the discrepancy
between model and measurement for all of the suspension types in T1100616, we see that the
estimate is consistently 0.05 mm off from the measurement. As such, we would assign the
buoyancy a correction of ±0.05 mm, but chose instead to exclude from all further calculations
for simplicity, as it is negligible compared with the 1 mm-level error of the other test mass
position uncertainty.
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2.2.4 Total Test Mass Position Uncertainty

The total test mass position is numerically evaluated with values of the 2014 surveyed posi-
tion, the HR surface to CoM projection, and buoyancy correction described above is treated
as a uniform (“top-hat”, “box-car”) distribution of values, where whose central value of the
position, or position correction, is that which has been reported. The distribution has equal
probability of all values between the central value ± the quoted uncertainty bound.

Figure 5 shows the distribution of test mass position after numerically evaluting the addition
of the 2014 surveyed position of the HR surface, the propagation in the longitudinal direction
from the HR surface to the center of mass, and the decrease in vertical position due to the
lack of air buoyancy when the test mass is in-vacuum.

(a) Numerically evaluated po-
sition of the x̂ component of−→
OT .

(b) Numerically evaluated po-
sition of the ŷ component of−→
OT .

(c) Numerically evaluated po-
sition of the ẑ component of−→
OT .

Figure 5: Probability distributions for the test mass position.

As expected, the ŷ and ẑ components return exactly what has been put in – a uniform
distribution, with 3-σ bounds matching the input bounds of ± 1 mm (recall we assign no
uncertainty to the ẑ buoyancy correction). However, we immediately see the power of the
numerical evaluation in the x̂ coordinate, were the sum of two uniform distributions follows
the pattern of an Irwin-Hall distribution, with probability (and thus uncertainty) dropping
off at the outer limits of the naive bound of the original two bounds added in quadrature.

2.3 NCAL External Frame Position

The position survey of the NCAL’s rectangular frame within to the global coordinate system
was completed on 22 September 2020 (see LHO aLOG 56801). The technique and instrumen-
tation used is as described in Section 2.1 and with the exact same total station instrument
and retro-reflector as in the 2014 survey of the test mass HR surface position. However, be-
cause the NCAL prototype does not have a mounting fixture for the optical prism to arrive
at the distance from the total station to the NCAL, S, it was merely held over each position
by hand. Discussion of potential artifacts and uncertainties that may have arisen from this
have been considered and deemed negligible, but are discussed in T2100262.

While a single surveyed point on the frame determines that point’s position within the
global coordinate system, in order to establish the NCAL frame’s orientation within the

global coordinate system, three positions on the frame were measured,
−→
A (“top left”),

−→
B
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Figure 6: A Solidworks view of the NCAL with labels showing the key points on the NCAL
frame. All Solidworks measurements will be denoted with a prime (8).

(“top right”), and
−→
E (“bottom right”) with the total station occupying the monument IAM-

EX-T7 about 3 m away (see 2). Figure 6 shows where each of these points are on the frame,

and Figure 3 shows a cartoon of the measurement of the
−→
A point. The relationship between

the position as determined from occupying IAM-EX-T7 and the global coordinate system is
again determined by adding in the occupied monument’s position,

−→
OA ≡

−−→
OM +

−→
A = OAxx̂+OAyŷ +OAz ẑ (8)

−−→
OB ≡

−−→
OM +

−→
B = OBxx̂+OByŷ +OBz ẑ (9)

−−→
OE ≡

−−→
OM +

−→
C = OExx̂+OEyŷ +OEz ẑ (10)

where
−−→
OM is the set position of the total station at 3998294.5 x̂, -4032.0 ŷ, and -110.8 ẑ

(where the x̂ and ŷ position of the total station was set w.r.t. IAM-EX-T7, and the ẑ position
determined by referencing the height monument BM #5).

The raw values for each measured
−→
A ,
−→
B , and

−→
C are listed in Table 2. The final calculated

position in global coordinates of
−→
OA,

−−→
OB, and ,

−−→
OE are listed in Table 3.
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Label Vector S [mm] θH θV

Top Left
−→
A 2831.3 283◦ 14’ 06” (283.235◦) 88◦ 33’ 14” (88.553889◦)

Top Right
−→
B 2903.6 284◦ 7’ 55” (284.131944◦) 88◦ 34’ 22” (88.572778◦)

Bottom Left
−→
E 2831.0 283◦ 14’ 24” (283.24◦) 89◦ 34’ 22” (89.572778◦)

Table 2: Raw results from surveying the position of the Top Left, Top Right, and Bottom
Left points of the NCAL frame from the monument IAM-EX-T7.

Measurement SolidWorks

Label Label, Oi Oix Oiy Oiz

Top Left OA 3998942.5 -1276.8 -39.4

Top Right OB 3999003.2 -1217.2 -38.5

Bottom Left OE 3998942.9 -1276.3 -89.7

Table 3: Results from surveying measurements of the frame of the NCAL as mounted on its
support structure in the Global coordinate system.

2.3.1 NCAL External Frame Position Uncertainty

For each of the three frame position points, as described in Section 2.1 we assign the raw
readings from the total station, θH , θV , and S the uncertainty from the manufacturer’s spec,
namely ± 1 arcsecond for θH and θV , and ± 2 mm for S. Figures 7-9 show the uncertainty
distributions for each of these positions. The ŷ components of each of the positions have the
most uncertainty with a 3-σ bound on the distribution at ∼ ± 2 mm.

(a) x̂ (b) ŷ (c) ẑ

Figure 7: Numerically evaluated components of the Top Left position.

2.4 NCAL Center of Rotation w.r.t. its external frame

The NCAL’s rotating disk is enclosed within aluminum safety shells and inaccessible within
the disk and shaft. As such, we must rely on a CAD model of the NCAL’s assembly to
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(a) x̂ (b) ŷ (c) ẑ

Figure 8: Numerically evaluated components of the Top Right position.

(a) x̂ (b) ŷ (c) ẑ

Figure 9: Numerically evaluated components of the Bottom Left position.

determine the location of the NCAL’s center of rotation with respect to accessible, physically
locate-able, parts of the NCAL.

Because we have the as-installed, surveyed positions of the external frame within the global
coordinate system, these are the natural connective reference points from which we must
“measure” the distance to the center of rotation within the model. While the CAD assembly
model is constructed in a Cartesian coordinate system, the relationship between that model’s
coordinate system and the IFO’s global coordinate system using the surveyed measurements
from Section 2.3 must still be determined. That mathematical process will be covered later
in Section 3, but for now, here, we only describe the distance between the “top left” point
of the frame within the model, ~A′ – the chosen origin of the CAD assembly – and the center
of rotation within the model, ~C ′.

We define unit vectors within CAD coordinate system as n̂, m̂, and p̂. m̂ and p̂ are aligned
with ~AB′ and ~AE ′, respectively (the CAD version of the real vectors formed between the “top
left” and “top right”, and “top left” and “bottom right,” surveyed points, again respectively).

n̂ is then perpendicular to the ~AB′ and ~AE ′ plane. Note, in order to be extra explicit about
vectors described in the CAD basis (vs. the same vectors in the IFO global coordinate
system), they are marked with the “prime” tick, ′.

The center of rotation of the NCAL disk w.r.t. to the “top left” point is defined by the

vector,
−→
AC ′, and has components,

−→
AC ′ ≡ = ACn n̂+ ACm m̂+ ACp p̂ (11)
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The values are shown in Figure 10, and listed in 4.

ACn ACm ACp
158.75 42.86 31.75

Table 4: Components of ~AC
′

in n̂, m̂, p̂ basis in millimeters.
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(b)

Figure 10: (a) SW measurement of n̂, m̂, p̂ components of ~AC
′
, marked as dX in red, dZ in

blue, and dY in green, respectively and (b) Corresponding map to components of ~AC
′

in
n̂, m̂, p̂ basis.

2.4.1 Uncertainty in the Center of Rotation within its frame

The NCal CAD assembly is a concatination of CAD models of the indivudually designed
parts. These individual part models are then used to create all machinists drawings. As
such, we assume the CAD assembly is exactly as designed with no uncertainty. However,

where uncertainty *may* creep in to ~AC
′

is the *inaccuracy* of the machined parts and
physical, as-built, real life assembly, and thus depscrepancy with the SolidWorks model
and intended design. As such, prior to installation, the SolidWorks CAD assembly of the
NCAL (D1900039) was compared against the real assembly. Discussed in detail in Section
5, we conclude any such discrepancy are an order of magnitude less than those from the
uncertainty in surveying, so we include the values in our calculation of the distance without
any uncertainty for simplicity.
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3 Combining Key Measurements

This section describes how the physical measurements of the frame are used to create an
intermediate coordinate system, to which the Solidworks assembly is tied, and from the
origin of that intermediate coordinate system, we can have SolidWorks tell us the “rest of
the distance” to the center of rotation, and thus arrive at the center of rotation in LIGO’s
global coordinate system, and in doing so, carrying along the uncertainty of doing so.
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Figure 11: Isometric diagram (with a zoomed in, more top-down, birds-eye view) of the
NCAL and the interrelation between the coordinate systems involved in this section.

3.1 Method

First we define the unit-normal coordinate system aligned with LIGO global co-ordinates,
such that

x̂ ≡

 1
0
0

 ; ŷ ≡

 0
1
0

 ; ẑ ≡

 0
0
1

 ; (12)

where:
|x̂| = |ŷ| = |ẑ| = 1 (13)
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Now, with the measurements described in 2.3 we establish the vectors
−→
AB and

−→
AE that are

located on the NCAL frame, as informed by the top left, top right and bottom left total
station measurements:

Top Left to Top Right (
−→
AB):

−→
AB ≡ [OB −OA] ≡ ABxx̂+ AByŷ + ABz ẑ (14)

Where:
ABx = (OBx + δOBx)− (OAx + δOAx) (15a)

ABy = (OBy + δOBy)− (OAy + δOAy) (15b)

ABz = (OBz + δOBz)− (OAz + δOAz) (15c)

and

|
−→
AB| =

√
(ABx + δABx)2 + (ABy + δABy)2 + (ABz + δABz)2 (16a)

|
−→
AB| =

{(
[OBx + δOBx]− [OAx + δOAx]

)2

+
(

[OBy + δOBy]− [OAy + δOAy]
)2

+
(

[OBz + δOBz]− [OAz + δOAz]
)2
}1/2

.

(16b)

Top Left to Bottom Left (
−→
AE):

−→
AE ≡ [OE −OA] ≡ AExx̂+ AEyŷ + AEz ẑ (17)

Where:
AEx = (OEx + δOEx)− (OAx + δOAx) (18a)

AEy = (OEy + δOEy)− (OAy + δOAy) (18b)

AEz = (OEz + δOEz)− (OAz + δOAz) (18c)

and:

|
−→
AE| =

√
(AEx + δAEx)2 + (AEy + δAEy)2 + (AEz + δAEz)2 (19a)

|
−→
AB| =

{(
[OEx + δOEx]− [OAx + δOAx]

)2

+
(

[OEy + δOEy]− [OAy + δOAy]
)2

+
(

[OEz + δOEz]− [OAz + δOAz]
)2
}1/2

.

(19b)

Note that a representative uncertainty term in the measured values of each component, δOAi
(etc) are carried around in the mathematical formalism to help convey where and how each
uncertainty will appear. However, as mentioned in Section 2, when all is said, what’s done
is a numerical evaluation, sampling from the distribution of calculated frame positions.
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With these vectors
−→
AB and

−→
AE, we can create an orthonormal basis set of unit vectors that

can be directly, one-to-one, mapped on to the SolidWorks model using
−→
AB,

−→
AE, and their

cross-product – insisting that the origin of the SolidWorks coordinate system is the top-left

point in both OA and OA′), and that the frame piece along which
−→
AB and

−→
AE lie is square

and the vectors are perpendicular such that
−→
AB =

−→
AB′ and

−→
AE =

−→
AE ′.

Define m̂ in terms of x̂, ŷ, ẑ components of
−→
AB:

m̂ ≡
−→
AB

|
−→
AB|

= mx x̂+my ŷ +mz ẑ (20)

=
ABx

|
−→
AB|

x̂+
ABy

|
−→
AB|

ŷ +
ABz

|
−→
AB|

ẑ (21)

m̂ =
(OBx + δOBx)− (OAx + δOAx)

|
−→
AB|

x̂

+
(OBy + δOBy)− (OAy + δOAy)

|
−→
AB|

ŷ

+
(OBz + δOBz)− (OAz + δOAz)

|
−→
AB|

ẑ (22)

Define p̂ in terms of x̂, ŷ, ẑ components of
−→
AE:

p̂ ≡
−→
AE

|
−→
AE|

= px x̂+ py ŷ + pz ẑ (23)

=
AEx

|
−→
AE|

x̂+
AEy

|
−→
AE|

ŷ +
AEz

|
−→
AE|

ẑ (24)

p̂ =
(OEx + δOEx)− (OAx + δOAx)

|
−→
AE|

x̂

+
(OEy + δOEy)− (OAy + δOAy)

|
−→
AE|

ŷ

+
(OEz + δOEz)− (OAz + δOAz)

|
−→
AE|

ẑ (25)

page 17



LIGO-T2000417-v7-

Define n̂ from m̂ and p̂:

n̂ ≡ m̂× p̂ = nx x̂+ ny ŷ + nz ẑ (26)

= det

∣∣∣∣∣∣
x̂ ŷ ẑ
mx my mz

px py pz

∣∣∣∣∣∣ (27)

= det

∣∣∣∣ my mz

py pz

∣∣∣∣ x̂+ det

∣∣∣∣ mx mz

px pz

∣∣∣∣ ŷ + det

∣∣∣∣ mx my

px py

∣∣∣∣ ẑ (28)

= + (mypz −mzpy) x̂− (mxpz −mzpx) ŷ + (mxpy −mypx) ẑ (29)

n̂ = +

[
1

|AB|
1

|AE|

([
(OBy + δOBy)− (OAy + δOAy)

][
(OEz + δOEz)− (OAz + δOAz)

]
−
[
(OBz + δOBz)− (OAz + δOAz)

][
(OEy + δOEy)− (OAy + δOAy)

])]
x̂

−

[
1

|AB|
1

|AE|

([
(OBx + δOBx)− (OAx + δOAx)

][
(OEz + δOEz)− (OAz + δOAz)

]
−
[
(OBz + δOBz)− (OAz + δOAz)

][
(OEx + δOEx)− (OAx + δOAx)

])]
ŷ

+

[
1

|AB|
1

|AE|

([
(OBx + δOBx)− (OAx + δOAx)

][
(OEy + δOEy)− (OAy + δOAy)

]
−
[
(OBy + δOBy)− (OAy + δOAy)

][
(OEx + δOEx)− (OAx + δOAx)

])]
ẑ

(30)

With the definition of the SolidWorks coordinate system in terms of the measured external
frame positions in LIGO global coordinate system, we can map the components of the

SolidWorks vector between the n̂, m̂, p̂ basis and the center of rotation,
−→
AC ′, and incorporate

the uncertainty from the frame measurement. Figure 12a shows the vector
−→
AC in each

coordinate system, and Figure 12b shows the projection (dot product) of each each n̂, m̂,
and p̂ basis vector on to each x̂, ŷ, and ẑ basis vector, and/or defines the nine angles θx, θy,
θz, ψx, ψy, ψz, φx, φy, φz in between each basis vector.

With these definitions, we can project the values of
−→
AC ′ in the n̂, n̂, p̂ basis we have from

Section 2.4 in to the x̂, ŷ, ẑ basis – or, in other words, create the vector
−→
OC, the vector

from the IFO global coordinate system origin to the center of rotation – and we’ve correctly
included the uncertainty in doing so. The following five systems of equations are all equivalent
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x .
 n 

= 
co

s (
θ x +

 δθ
x)

x . p = cos (φ
x  + δφ

x )

x . m = cos (ψx + δψx)

p∧

m∧

n∧

AC⇀

(ACn) n
∧

(ACm) m
∧

(ACp) p
∧

p∧

m∧

n
∧ y∧

p∧

m∧

n
∧

x∧

p∧

m∧

n
∧ y∧

x∧

z∧

p∧

m∧

n
∧

z∧

y 
. n

 =
 c

os
 (θ

y +
 δ
θ y

)

y . p = cos (φy + δφy)

y . m = cos (ψy + δψy)

z .
 n

 =
 c

os
 (θ

z +
 δ
θ z

)

z . p = cos (φz + δφz)

z . m = cos (ψ z +
 δψ z)

ACx

ACy

ACz

ACn

ACm

ACp

x . n

y . m

z . p

x . m

z . m

y . p

x . p

y . n

z . n

=

OB’
top 
right

OA
top 
left

OE
bottom 
left

p∧

m∧

n∧

z∧

y∧

x∧

(OAx+ δOAx)

(OAy+ δOAx)

(OAz+ δOAx)

(OBx+ δOBx)

(OBy+ δOBy)

(OBz+ δOBz)

(OEx+ δOEx)

(OEy+ δOEy)

(OEz+ δOEz)

ABx = (OBx+ δOBx) - (OAx+ δOAx)

ABy = (OBy+ δOBy) - (OAy+ δOAy)

ABz = (OBz+ δOBz) - (OAz+ δOAz)

AEx = (OEx+ δOEx) - (OAx+ δOAx)

AEy = (OEy+ δOEy) - (OAy+ δOAy)

AEz = (OEz+ δOEz) - (OAz+ δOAz)

|AB| = √{[(OBx+ δOBx) - (OAx+ δOAx)]2 + [(OBy+ δOBy) - (OAy+ δOAy)]2 + [(OBz+ δOBz) - (OAz+ δOAz)]2}  

m =
∧ (OBx+ δOBx) - (OAx+ δOAx)

|AB|
x + 

(OBy+ δOBy) - (OAy+ δOAy)
|AB|

y + z 
(OBz+ δOBz) - (OAz+ δOAz)

|AB|
∧ ∧ ∧

p =
∧

|AE| = √{[(OEx+ δOEx) - (OAx+ δOAx)]2 + [(OEy+ δOEy) - (OAy+ δOAy)]2 + [(OEz+ δOEz) - (OAz+ δOAz)]2}  

m = mx x + my y + mz z ≡
∧ ∧ ∧

∧ ∧ ∧

ACx = nx ACn + mx ACm + px ACp

ACy = ny ACn + my ACm + py ACp

ACz = nz ACn + mz ACm + pz ACp

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

AC⇀

AC⇀ AC⇀ AC⇀ AC⇀

∧
∧

∧
∧

∧
∧

∧ ∧
∧ ∧

∧ ∧
∧ ∧∧ ∧

∧
∧

AB ≡ ABx  x + ABy  y + ABz  z
⇀ ∧ ∧ ∧

AE ≡ AEx  x + AEy  y + AEz  z
⇀ ∧ ∧ ∧

 | x | = | y | = | z | ≡ 1∧ ∧ ∧

|AB|2 ≡ AB . AB = [ABx]2 + [ABy]2 +[ABz]2

|AE|2 ≡ AE . AE = [AEx]2 + [AEy]2 +[AEz]2

⇀ ⇀

⇀ ⇀

∧ AB
|AB|

⇀

= ABx
|AB|

x + ABy
|AB|

y + 
ABz
|AB| z 

∧ ∧ ∧

p = px x + py y + pz z ≡
∧ ∧ ∧∧ AB

|AB|

⇀

= AEx
|AE|

x + AEy
|AE|

y + 
AEz
|AE| z 

∧ ∧ ∧

n = (my pz - mz py ) x - (mx pz - mz px ) y + (mx py - my px ) z

x      y      z
mx   my   mz
px    py    pz

∧ ∧ ∧

= det

my   mz   
py    pz

∧
= det x  - mx   mz   

px    pz

∧
det y  + mx   my   

px    py

∧
det z 

n = nx x + ny y + nz z ≡ m × p
∧∧ ∧ ∧ ∧ ∧

x . m = (1) mx + (0) my + (0) mz = mx =

z . n = nz = + (mx py - my px ) = + 

x . n = nx = + (my pz - mz py ) = +  

y . p = py =

x . p = px =

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

AC ≡ ACn  n + ACm m + ACp  p
⇀ ∧ ∧ ∧

1
|AB|

(OBx+ δOBx) - (OAx+ δOAx)

y . m = (0) mx + (1) my + (0) mz = my =
1

|AB|
(OBy+ δOBy) - (OAy+ δOAy)

z . m = (0) mx + (0) my + (1) mz = mz =
1

|AB|
(OBz+ δOBz) - (OAz+ δOAz)

 z . p = pz =

1
|AE|

(OEx+ δOEx) - (OAx+ δOAx)

1
|AE|

(OEy+ δOEy) - (OAy+ δOAy)

1
|AE|

(OEz+ δOEz) - (OAz+ δOAz)

(OBy+ δOBy) - (OAy+ δOAy) (OEz+ δOEz) - (OAz+ δOAz)(
- (OEy+ δOEy) - (OAy+ δOAy)(OBz+ δOBz) - (OAz+ δOAz) )

1
|AB|

1
|AE|

y . n = ny = - (mx pz - mz px ) = 
∧ ∧ 1

|AB|
1

|AE|
- (OBx+ δOBx) - (OAx+ δOAx) (OEz+ δOEz) - (OAz+ δOAz)(

- (OEx+ δOEx) - (OAx+ δOAx)(OBz+ δOBz) - (OAz+ δOAz) )
1

|AB|
1

|AE|
(OBx+ δOBx) - (OAx+ δOAx) (OEy+ δOEy) - (OAy+ δOAy)(

- (OEx+ δOEx) - (OAx+ δOAx)(OBy+ δOBy) - (OAy+ δOAy) )

ACx = ( x . n ) ACn + ( x . m ) ACm + ( x . p ) ACp

ACy = ( y . n ) ACn + ( y . m ) ACm + ( y . p ) ACp

ACz = ( z . n ) ACn + ( z . m ) ACm + ( z . p ) ACp

∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧∧ ∧

∧ ∧ ∧ ∧ ∧ ∧

SolidWorks “dY”

SolidWorks “dX”
SolidWorks “dZ”

 x  = [ 1 , 0 , 0 ]

LIGO Global Coordinate unit vectors

 y  = [ 0 , 1 , 0 ]
 z  = [ 0 , 0 , 1 ]

Define vectors between the sighted A, B, and E (top left, top right, and bottom left) measurement points, each
with values and uncertainty in each LIGO coordinate direction

∧

Define a (fundamentally uncertain) orthonormal basis set of unit vectors that are in the plane of the 
sighted A, B, and E measured points,  the origin of which can be defined in SolidWorks

After grabbing the AC vector components from SolidWorks, use the (uncertain) relationship between the n, m, p basis and the x, y, z basis via coordinate system transformation matrix to find the 
center of the rotor (with uncertainty) in LIGO global coordinates. Project each x, y, z basis vector on to each n, m, p basis, which you can think of either as the following matrix of dot products or a 
matrix of cosines of the (uncertain) angles θx , θy , θz , ψx , ψy , ψz , φx , φy , and φz  shown above.

LIGO Global 
Coordinate System 

Unit Vectors

SolidWorks or A, B, E 
Measurement Unit 

Vectors

SolidWorks measured 
vector from origin to 

center of rotor

∧∧∧∧∧∧⇀

ACx = cos (θx + δθx) ACn + cos (ψx + δψx) ACm + cos (φx + δφx) ACp

ACy = cos (θy + δθy) ACn + cos (ψy + δψy) ACm + cos (φy + δφy) ACp

ACz =  cos (θz + δθz) ACn + cos (ψz + δψz) ACm + cos (φz + δφz) ACp

Each of the following definitions below are all equivalent ways of 
representing a coordinate system transformation Working out the elements of the matrix explicitly, acknowledging the 

definitions of each unit vector from above,

After working out the elements explicitly, we find the expression is quite straight-forward (explicitly 
because the x, y, z, coordinate system is *actually* a simple unit vector system, rather than another 
complicated system like the n, m, p system)

∧∧∧

∧∧∧
∧∧∧

LIGO Global 
Coordinate System 

Unit Vectors

SolidWorks or A, B, E 
Measurement Unit 

Vectors

SolidWorks measured 
vector from origin to 

center of rotor

Isometric view of 
NCAL system

(Different) isometric view of 
SolidWorks/Measurement 
Coordinates w.r.t. vector from 
SW origin to NCAL Center of 
Rotation

(Original) isometric view of vector from SW/
Meas origin to NCAL Center of Rotation, in 
both SolidWorks/Measurement basis and 
LIGO Global basis

Angle definitions between SolidWorks/
Measurement basis and LIGO Global basis

(OEx+ δOEx) - (OAx+ δOAx)
|AB|

x + 
(OEy+ δOEy) - (OAy+ δOAy)

|AB|
y + z 

(OEz+ δOEz) - (OAz+ δOAz)
|AB|

∧ ∧ ∧

(a) Both coordinate systems

n̂, m̂, p̂ shown with
−→
AC.

x .
 n 

= 
co

s (
θ x +

 δθ
x)

x . p = cos (φ
x  + δφ

x )

x . m = cos (ψx + δψx)

p∧

m∧

n∧

AC⇀

(ACn) n
∧

(ACm) m
∧

(ACp) p
∧

p∧

m∧

n
∧ y∧

p∧

m∧

n
∧

x∧

p∧

m∧

n
∧ y∧

x∧

z∧

p∧

m∧

n
∧

z∧

y 
. n

 =
 c

os
 (θ

y +
 δ
θ y

)

y . p = cos (φy + δφy)

y . m = cos (ψy + δψy)

z .
 n

 =
 c

os
 (θ

z +
 δ
θ z

)

z . p = cos (φz + δφz)

z . m = cos (ψ z +
 δψ z)

ACx

ACy

ACz

ACn

ACm

ACp

x . n

y . m

z . p

x . m

z . m

y . p

x . p

y . n

z . n

=

OB’
top 
right

OA
top 
left

OE
bottom 
left

p∧

m∧

n∧

z∧

y∧

x∧

(OAx+ δOAx)

(OAy+ δOAx)

(OAz+ δOAx)

(OBx+ δOBx)

(OBy+ δOBy)

(OBz+ δOBz)

(OEx+ δOEx)

(OEy+ δOEy)

(OEz+ δOEz)

ABx = (OBx+ δOBx) - (OAx+ δOAx)

ABy = (OBy+ δOBy) - (OAy+ δOAy)

ABz = (OBz+ δOBz) - (OAz+ δOAz)

AEx = (OEx+ δOEx) - (OAx+ δOAx)

AEy = (OEy+ δOEy) - (OAy+ δOAy)

AEz = (OEz+ δOEz) - (OAz+ δOAz)

|AB| = √{[(OBx+ δOBx) - (OAx+ δOAx)]2 + [(OBy+ δOBy) - (OAy+ δOAy)]2 + [(OBz+ δOBz) - (OAz+ δOAz)]2}  

m =
∧ (OBx+ δOBx) - (OAx+ δOAx)

|AB|
x + 

(OBy+ δOBy) - (OAy+ δOAy)
|AB|

y + z 
(OBz+ δOBz) - (OAz+ δOAz)

|AB|
∧ ∧ ∧

p =
∧

|AE| = √{[(OEx+ δOEx) - (OAx+ δOAx)]2 + [(OEy+ δOEy) - (OAy+ δOAy)]2 + [(OEz+ δOEz) - (OAz+ δOAz)]2}  

m = mx x + my y + mz z ≡
∧ ∧ ∧

∧ ∧ ∧

ACx = nx ACn + mx ACm + px ACp

ACy = ny ACn + my ACm + py ACp

ACz = nz ACn + mz ACm + pz ACp

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

AC⇀

AC⇀ AC⇀ AC⇀ AC⇀

∧
∧

∧
∧

∧
∧

∧ ∧
∧ ∧

∧ ∧
∧ ∧∧ ∧

∧
∧

AB ≡ ABx  x + ABy  y + ABz  z
⇀ ∧ ∧ ∧

AE ≡ AEx  x + AEy  y + AEz  z
⇀ ∧ ∧ ∧

 | x | = | y | = | z | ≡ 1∧ ∧ ∧

|AB|2 ≡ AB . AB = [ABx]2 + [ABy]2 +[ABz]2

|AE|2 ≡ AE . AE = [AEx]2 + [AEy]2 +[AEz]2

⇀ ⇀

⇀ ⇀

∧ AB
|AB|

⇀

= ABx
|AB|

x + ABy
|AB|

y + 
ABz
|AB| z 

∧ ∧ ∧

p = px x + py y + pz z ≡
∧ ∧ ∧∧ AB

|AB|

⇀

= AEx
|AE|

x + AEy
|AE|

y + 
AEz
|AE| z 

∧ ∧ ∧

n = (my pz - mz py ) x - (mx pz - mz px ) y + (mx py - my px ) z

x      y      z
mx   my   mz
px    py    pz

∧ ∧ ∧

= det

my   mz   
py    pz

∧
= det x  - mx   mz   

px    pz

∧
det y  + mx   my   

px    py

∧
det z 

n = nx x + ny y + nz z ≡ m × p
∧∧ ∧ ∧ ∧ ∧

x . m = (1) mx + (0) my + (0) mz = mx =

z . n = nz = + (mx py - my px ) = + 

x . n = nx = + (my pz - mz py ) = +  

y . p = py =

x . p = px =

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

∧ ∧

AC ≡ ACn  n + ACm m + ACp  p
⇀ ∧ ∧ ∧

1
|AB|

(OBx+ δOBx) - (OAx+ δOAx)

y . m = (0) mx + (1) my + (0) mz = my =
1

|AB|
(OBy+ δOBy) - (OAy+ δOAy)

z . m = (0) mx + (0) my + (1) mz = mz =
1

|AB|
(OBz+ δOBz) - (OAz+ δOAz)

 z . p = pz =

1
|AE|

(OEx+ δOEx) - (OAx+ δOAx)

1
|AE|

(OEy+ δOEy) - (OAy+ δOAy)

1
|AE|

(OEz+ δOEz) - (OAz+ δOAz)

(OBy+ δOBy) - (OAy+ δOAy) (OEz+ δOEz) - (OAz+ δOAz)(
- (OEy+ δOEy) - (OAy+ δOAy)(OBz+ δOBz) - (OAz+ δOAz) )

1
|AB|

1
|AE|

y . n = ny = - (mx pz - mz px ) = 
∧ ∧ 1

|AB|
1

|AE|
- (OBx+ δOBx) - (OAx+ δOAx) (OEz+ δOEz) - (OAz+ δOAz)(

- (OEx+ δOEx) - (OAx+ δOAx)(OBz+ δOBz) - (OAz+ δOAz) )
1

|AB|
1

|AE|
(OBx+ δOBx) - (OAx+ δOAx) (OEy+ δOEy) - (OAy+ δOAy)(

- (OEx+ δOEx) - (OAx+ δOAx)(OBy+ δOBy) - (OAy+ δOAy) )

ACx = ( x . n ) ACn + ( x . m ) ACm + ( x . p ) ACp

ACy = ( y . n ) ACn + ( y . m ) ACm + ( y . p ) ACp

ACz = ( z . n ) ACn + ( z . m ) ACm + ( z . p ) ACp

∧ ∧ ∧ ∧ ∧ ∧

∧ ∧ ∧ ∧∧ ∧

∧ ∧ ∧ ∧ ∧ ∧

SolidWorks “dY”

SolidWorks “dX”
SolidWorks “dZ”

 x  = [ 1 , 0 , 0 ]

LIGO Global Coordinate unit vectors

 y  = [ 0 , 1 , 0 ]
 z  = [ 0 , 0 , 1 ]

Define vectors between the sighted A, B, and E (top left, top right, and bottom left) measurement points, each
with values and uncertainty in each LIGO coordinate direction

∧

Define a (fundamentally uncertain) orthonormal basis set of unit vectors that are in the plane of the 
sighted A, B, and E measured points,  the origin of which can be defined in SolidWorks

After grabbing the AC vector components from SolidWorks, use the (uncertain) relationship between the n, m, p basis and the x, y, z basis via coordinate system transformation matrix to find the 
center of the rotor (with uncertainty) in LIGO global coordinates. Project each x, y, z basis vector on to each n, m, p basis, which you can think of either as the following matrix of dot products or a 
matrix of cosines of the (uncertain) angles θx , θy , θz , ψx , ψy , ψz , φx , φy , and φz  shown above.

LIGO Global 
Coordinate System 

Unit Vectors

SolidWorks or A, B, E 
Measurement Unit 

Vectors

SolidWorks measured 
vector from origin to 

center of rotor

∧∧∧∧∧∧⇀

ACx = cos (θx + δθx) ACn + cos (ψx + δψx) ACm + cos (φx + δφx) ACp

ACy = cos (θy + δθy) ACn + cos (ψy + δψy) ACm + cos (φy + δφy) ACp

ACz =  cos (θz + δθz) ACn + cos (ψz + δψz) ACm + cos (φz + δφz) ACp

Each of the following definitions below are all equivalent ways of 
representing a coordinate system transformation Working out the elements of the matrix explicitly, acknowledging the 

definitions of each unit vector from above,

After working out the elements explicitly, we find the expression is quite straight-forward (explicitly 
because the x, y, z, coordinate system is *actually* a simple unit vector system, rather than another 
complicated system like the n, m, p system)

∧∧∧

∧∧∧
∧∧∧

LIGO Global 
Coordinate System 

Unit Vectors

SolidWorks or A, B, E 
Measurement Unit 

Vectors

SolidWorks measured 
vector from origin to 

center of rotor

Isometric view of 
NCAL system

(Different) isometric view of 
SolidWorks/Measurement 
Coordinates w.r.t. vector from 
SW origin to NCAL Center of 
Rotation

(Original) isometric view of vector from SW/
Meas origin to NCAL Center of Rotation, in 
both SolidWorks/Measurement basis and 
LIGO Global basis

Angle definitions between SolidWorks/
Measurement basis and LIGO Global basis

(OEx+ δOEx) - (OAx+ δOAx)
|AB|

x + 
(OEy+ δOEy) - (OAy+ δOAy)

|AB|
y + z 

(OEz+ δOEz) - (OAz+ δOAz)
|AB|

∧ ∧ ∧

(b) Projections and angles between in n̂, m̂, p̂ basis and
x̂, ŷ, ẑ basis.

Figure 12: Definition of relationships between SolidWorks coordinate basis vectors, n̂, m̂, p̂
and LIGO global coordinate basis vectors x̂, ŷ, ẑ

expressions for the projections.

OCx = ACn cos θx + ACm cosψx + ACp cosφx

OCy = ACn cos θy + ACm cosψy + ACp cosφy (31)

OCz = ACn cos θz + ACm cosψz + ACp cosφz

−→
OC = M

−→
AC (32) OCx

OCy
OCz

 =

 x̂ · n̂ x̂ · m̂ x̂ · p̂
ŷ · n̂ ŷ · m̂ ŷ · p̂
ẑ · n̂ ẑ · m̂ ẑ · p̂

 ACn
ACm
ACp

 (33)

OCx = (x̂ · n̂)ACn + (x̂ · m̂)ACm + (x̂ · m̂)ACp

OCy = (ŷ · n̂)ACn + (ŷ · m̂)ACm + (ŷ · p̂)ACp (34)

OCz = (ẑ · n̂)ACn + (ẑ · m̂)ACm + (ẑ · p̂)ACp

OCx = nx ACn +mx ACm + px ACp

OCy = ny ACn +my ACm + py ACp (35)

OCz = nz ACn +mz ACm + pz ACp

where from Eq. 35 it’s clear that we can just multiply the components of
−→
AC ′ by the correct

x̂, ŷ, ẑ components from Eqs. 22, 25, and 30 of m̂, n̂, p̂, basis to arrive at projection of
−→
AC ′

in to
−→
OC. But most importantly the uncertainty of each surveyed frame point’s physical

position OA, OB, and OE is baked in.
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3.2 NCAL Center of Rotation in LIGO Global Coordinates

The NCAL’s Center of Rotation, as calculated by combining the surveyed position of the
frame (Section 2.3) and the CAD assembly “measured” distance from the frame to the center
of rotation results (Section 2.4) using the methods described in Section 3.1 are listed in Table
5. The uncertainty (confidence intervals on the distributions of component values) are shown
in Figure 13.

Label OCx OCy OCz

NCAL Center of Rotation 3998862.1 -1133.3 -70.4

Table 5: Calculated values of the NCAL center of rotation in the LIGO global coordinate
system as projected from SolidWorks Assembly and surveyed positions of the external frame.

(a) x̂ (b) ŷ (c) ẑ

Figure 13: Numerically evaluated components of the NCAL’s center of rotation.

4 Results

Now we get the final answer by subtracting the vector between the test mass
−→
OT (Section

2.2) from the center of rotation of the NCAL
−→
OC (Section 3.2),

−→
TC ≡

−→
OC −

−→
OT (36)

As the LIGO global coordinate system’s origin subtracts away, we report the answer both
in terms of x̂, ŷ, and ẑ which are still aligned within the global coordinate system (see Table
6 and Figure 14), but we also report the answer in terms more natural for the analytic
expressions for the force estimate, i.e. cylindrical coordinates, with magnitudes rho, Φ, and
(a repeat of) z (see Table 7 and Figure 15), Also, since this is the “final answer” we report the
uncertainty on these values in terms of 1-, 2-, and 3-σ confidence intervals of the numerically
evaluated distribution.
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Label Median 1-σ c.i. 2-σ c.i. 3-σ c.i.

TCx -722.8 +2.48
−2.5

+4.66
−4.59

+6.20
−5.99

TCy -933.0 +1.54
−1.52

+2.91
−2.81

+3.89
−3.78

TCz +10.0 +2.98
−2.97

+5.38
−5.39

+6.63
−6.66

Table 6: Calculated median, and 1-, 2-, and 3-σ, percentile values for the calculated proba-
bility distribution of each Cartesian component of the distance vector between the center of
mass of the ETMX test mass and the NCAL center of rotation, ~TC. The Cartesian, x̂ŷẑ,
components are aligned with LIGO global coordinate system. All values are reported in
millimeters.

Label Median 1-σ c.i. 2-σ c.i. 3-σ c.i.

TCρ +1180.2 +2.37
−2.38

+4.46
−4.52

+5.93
−6.09

TCΦ +52.2 +0.08
−0.08

+0.15
−0.15

+0.20
−0.19

TCz +10.0 +2.98
−2.97

+5.38
−5.39

+6.63
−6.66

Table 7: Calculated median, and 1-, 2-, and 3-σ, percentile values for the calculated prob-
ability distribution of each component of the distance vector between the center of mass of
the ETMX test mass and the NCAL center of rotation, ~TC, in polar-cylindrical coordinates.
The ẑ component is perpendicular to with LIGO global coordinate system’s x̂ŷ plane, and
the polar coordinates lie on that plane. ˆrho and ẑ values are reported in millimeters. Φ is
reported in degrees, and is defined in the +RZ direction with a right-handed rotation about
ẑ, (i.e. counter-clockwise, if looking down from above the test mass - NCAL system), and
Φ = 0 deg is defined by the −x̂ direction.
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(a) x̂ (b) ŷ

(c) ẑ

Figure 14: Numerically evaluated components of the NCAL’s center of rotation in cartesian
coordinates.
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(a) ρ̂ (b) Φ̂

Figure 15: Numerically evaluated components of the NCAL’s center of rotation in cylindrical
coordinates (the ẑ distribution is identical in both coordinate systems, so only one is shown
for brevity).
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5 Corroboration of NCAL SolidWorks Assembly

The n̂− m̂ position of the rotor’s center of rotation with respect to the frame is defined by
the shaft’s alignment through the rotor, the holes in the top and bottom frame, and the
perpendicularity of the frame. All holes within the as-built rotor were verified to be within
±5 µm of the design location via coordinate measuring machine. The 0.75 inch shaft is
press-fit through the 0.75 inch hole in the center of the rotor. The through-holes within
the top/bottom frame, in which the 1 inch bearings are pressed, and the bolt-holes which
define the placement and perpendicularity of the frame were all machined at standard CNC
machine tolerance of ±0.127 mm (0.005 inches). The perpendicularity is defined by the
mating of cut surfaces of the frames, all connected as flush with no evidence of error.

As such, we assume the n̂−m̂ of the center of the rotor w.r.t. the frame within the SolidWorks
Model (determined by computing the center of the cylindrical surface formed by the outer
edge of the rotor) has uncertainty no larger than the tolerance at which each parts were
machined, i.e. ±0.127 mm (0.005 inches).

The p̂ position is the most uncertain, as it relies on the assembled vertical position of the
shaft/rotor within the frame holes, which may be set relatively freely within the 0.5 inch
range of motion that is left between the 2 inch thick rotor mated to its 0.25 inch thick base
plate and the 2.75 inch height of the frame cavity. On the real assembly, the position was
aligned to have the upper and lower surfaces of the rotor/base plate equidistant from the
frame. The “gap” between the upper surface of the rotor and the lower surface of the top
frame plate was then roughly confirmed using height stand / dial indiciator system to be
at 0.23 ± 0.05 inches = 5.842 ± 1.27 mm which consistent with the design value of 0.25
inches = 6.35 mm (see details of this measurement discussed in G2101300). As such, the
SolidWorks assembly is forced to ensure this gap is 0.25 inches, and thus the p̂ position of
the center of the rotor w.r.t. frame is set, and we assume machine-tolerance uncertainty of
±0.127 mm (0.005 inches).

Since we attribute ±0.127 mm to all n̂, m̂, p̂ components, and these are an order of magnitude
less than those from surveying, we include the values in our calculation of the distance
without any uncertainty for simplicity.

6 Analysis Code

All analysis reported in this document has been calculated and produced using the python
script, final results plots.py, which is a wrapper around a python library of modules,
called NCal SurveyPosition.py, from which final results plots.py performs the follow-
ing operations on 105 iterations of the following process:

• the input parameter values and uncertainty bounds described in Section 2 are initiated
by calling the values hard-coded in the NCal SurveyPosition.py module hc params

whose definition starts on line 455,

• those parameters, and their uncertainty bounds, are turned in to probability distribu-
tions with the NCal SurveyPosition.py module distribution sample whose defini-
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tion starts on line 119,

• each of the three surveyed positions of the NCAL frame (now each a sample from
the distribution of S, θH , θV distances and angles from monument IAM-EX-T7 to the

frame) are converted in to the vectors
−→
OA,
−−→
OB, and

−−→
OE in LIGO global Cartesian x̂, ŷ, ẑ

coordinates with the NCal SurveyPosition.py module totalstation to cartesian

whose definition starts on line 66 (running the sampled values from
−→
A ,
−→
B , and

−→
E in

Table 2 through Eqs. 3-5 and adding in the monument position
−−→
OM ,

• The x̂, ŷ, and ẑ components of the n̂, m̂, p̂ basis are computed using the LIGO global
coordinates of the measured frame positions in the NCal SurveyPosition.py module
compute new basis whose definiton starts on line 193 (following Eqs. 22, 25, and 30),

• The SolidWorks “measured” vector,
−→
AC ′ in the n̂, m̂, p̂ is projected on to the x̂, ŷ, ẑ

basis and added the Top Left position,
−→
OA, to establish the NCAL center of rotation,−→

OC in the NCal SurveyPosition.py module compute centre whose definition starts
on line 278 (following Eq. 35),

• The test mass center of mass is computed from adding the test mass thickness (as a
sampled distribution with bounds +/- 1 mm) to x̂ coordinate of the surveyed “center
of the HR surface” position (as a sampled distribution with x̂, ŷ, ẑ bounds of +/- 3,
1, 1 mm), and 0.4 mm buoyancy correction is subtracted from the ẑ coordinate of

the “center of the HR surface” position creating
−→
OT (a la discussion in 2.2), in line,

without the need for any module (i.e. just as discussed in Subsection 2.2 and Eq. 7),
and

• The test mass center of mass,
−→
OT , is subtracted from the NCAL center of rota-

tion,
−→
OC, to form the final answer – the distance between the two,

−→
TC – in ei-

ther Cartesian or Cylindrical coordinates using the NCal SurveyPosition.py module
compute distance whose definition starts on line 337 (following Eq. 36).

The histograms of all of the above distributions of each of these steps are what’s shown
throughout Sections 2 - 4 are produced with the NCal SurveyPosition.py module PNG hist

whose definition starts on line 378.

An independent Matlab script which quickly performs a virtually identical numerical evalu-
ation but with much less sophistication, polish, and computational overhead, called coordi-
nateCalc.m has been used as a cross-check of the results. It produces results consistent with
final results plots.py.
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7 Related Documents

LIGO DCC
Document ID

Title Description

E1400205
IAS LHO primary optic as
built alignment summary.

Position of HR surface of ETMX.

D0902455 ETM Subtrate Assembly
Longitudinal distance between
ETMX HR Surface and ETMX
COM

D1100291 aLIGO IAS LHO Monuments.
Map and list of global-coordinate
position monuments. including
those used at X-end-station.

D0901153
ALIGO AdvLIGO BSC9-H1
XYZ local CS for ETMX.

SolidWorks Rendering used for
sanity checks only.

LHO aLOG
56801

Survey Measurements for
NCAL Prototype

Position of Frame Measurement
Points w.r.t. End-station Monu-
ments

D1900039 NCAL SolidWorks Assembly
Position of NCAL Center of Ro-
tation w.r.t. Frame

D1900280 NCAL chamber drawing.
Solidworks Rendering used for
sanity checks only.
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