
Technical Notes on Null Stream Polarization Test

Isaac C. F. Wong, Peter T. H. Pang, Rico K. L. Lo

June 23, 2020

1 Null Stream

Consider a D-detector observation model in frequency domain,

d̃ = Fh̃ + ñ (1)

where d̃ ∈ CD×K is the observed data strain, F ∈ RD×M is the antenna response
function, h̃ ∈ CM×K is the polarization modes, ñ ∈ CD×K is the detector noise,
M is the number of polarization modes, and K is the number of frequency bins.

Then divide each side of (4) by
√

1
2δf S[k] where S[k] is the one-sided noise

power spectral density to obtain the noise-weighed quantities.

d̃w = Fwh̃ + ñw (2)

where d̃w is the noise-weighed data strain, Fw is the noise-weighed antenna
response function, and ñw is the noise-weighed detector noise. Notice that

Fw = Fw(α, δ, ψ) ∈ RD×M×K = F/
√

1
2δf S where α is the right ascension, δ

is the declination, and ψ is the polarization angle. One can construct a null
projector P from Fw

P(α, δ) = I− Fw(FTwFw)−1FTw (3)

Notice that the construction of P is independent of ψ since ψ represents the
rotation of the column vectors of Fw within the subspace spanned by the column
vectors. One should notice that Fw ∈ RD×M×K , and the matrix operation in
(3) is done for each frequency index.
Suppose the source comes from (αtrue, δtrue) i.e.

d̃ = F(αtrue, δtrue)h̃ + ñ (4)

, then

P(αtrue, δtrue)d̃ = P(αtrue, δtrue)ñ (5)
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with no signal content remains. We can conveniently define the null energy Enull

Enull(α, δ) =
∑
k

d̃†P(α, δ)d̃ (6)

where k is the frequency index. And

Enull(αtrue, δtrue) =
∑
k

ñ†P(αtrue, δtrue)ñ (7)

where 2Enull(αtrue, δtrue) follows the χ2 distribution with degree of freedom
DoF = 2(D −M)K. The likelihood function is thus in the form

p(d̃|α, δ;H) = χ2
DoF(2Enull(α, δ)) (8)

where χ2
DoF(·) denotes the χ2 probability density function.

2 Polarization Test with Null Stream

The polarization hypotheses are encoded in the F assumed to construct null
projectors. The different F being assumed and the implied time delay from the
sky position together will resolve different polarization models regardless of the
waveform h̃. For example

Htensor → F =
[
f+ f×

]
(9)

Hvector → F =
[
fx fy

]
(10)

Hscalar → F =
[
fb fl

]
(11)

For the case of scalar hypothesis, since fb and fl are collinear, we only need to
pick either of them to construct the null projector. Then we can compute the
evidence of each polarization hypothesis

ZH =

∫
p(d|~θ;H)p(~θ)d~θ (12)

where ~θ = (α, δ). The model selection is then done with the Bayes factor

BH1

H0
=
ZH1

ZH0

(13)

3 Resolvability beteen Different Polarization Hy-
potheses in a three-detector Network

Notice that the degree of freedom of the likelihood function is DoF = 2(D −
M)K. With D = 3, the maximum value of M is hence 2, and then we would
only be able to test for Htensor (M = 2), Hvector (M = 2) and Hscalar (M = 1).
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For brevity, let us call the signal containing M polarization modes as a rank M
signal. This can be seen in

s̃D×K = FD×M h̃M×K (14)

. The s̃ is indeed a rank M matrix.
Qualitatively, we can argue that in general scalar model can be better resolved
from tensor model than vector model. This can be understood from the nature
of null projector. The Pvector is constructed from

[
fx f×

]
which will project

away two dimensions from the data space, while the Pscalar is constructed from
either

[
fb
]

or
[
fl
]

which will project away only one dimension from the data
space. Suppose the underlying truth is Htensor which implies the signal is rank
2, then there is no way the Pscalar can completely cancel the signal content.
However, it is possible that the Pvector which projects away two dimensions to
almost cancel the signal at some (α, δ), but this seemingly near-degeneracy is
resolved by the implied time delay at each sky position. And indeed, with more
detectors, Htensor and Hvector can be better resolved.

4 Residual Energy

We can also quantitatively verify the above argument. If we assume each po-
larization mode carries the same amount of energy i.e.∑

n

h2+[n] =
∑
n

h2×[n] (15)

, we can show that the ratio between the residual energy and the total sig-
nal energy is independent of h̃, and this is convenient for us to examine the
resolvability between different polarization hypotheses.

4.1 Derivation

Suppose a pure tensorial signal observed in a D-detector network s = Fth ∈
RD×N , the total signal energy can be computed by

E(s) = Tr(sT s) (16)

, and

E(s) = Tr(sT s) (17)

= Tr(hTFTt Fth) (18)

Perform singular value decomposition on Ft, we have

Ft = UtStV
T
t (19)
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then substitute it into (18) and then we could express it as follows

E(s) = Tr(hTVtStU
T
t UtStV

Th) (20)

= Tr(S2
tV

ThhTV) (21)

=
∑
i

S2
t,i(V

ThhTV)ii (22)

Here VTh can be interpreted as the polarization modes in the rotated polar-
ization plane. If we assume each polarization mode carries the same energy,
then

(VThhTV)ii = (hhT )ii (23)

and

(hhT )ii = (hhT )jj (24)

then

E(s) = (hhT )jj
∑
i

S2
t,i (25)

where (hhT )jj is the energy of the j-th polarization mode.
The null stream z is contructed by projecting out the subspaces spanned by the
antenna response function of given polarization modes. Denote zv/s be the null
stream constructed with vector antenna response function and scalar antenna
response function respectively.

zv/s = Pv/ss (26)

where

Pv/s = I− Fv/s(F
T
v/sFv/s)

−1FTv/s (27)

The residual energy can also be expressed in the same form

E(zv/s) = Tr(zTv/szv/s) (28)

Similarly, the residual energy can be expressed in terms of singular values of
Pv/sFt since

E(zv/s) = Tr(zTv/szv/s) (29)

= Tr(hT (Pv/sFt)
T (Pv/sFt)h) (30)

then perform singular value decomposition on Pv/sFt

Pv/sFt = Uv/sSv/sV
T
v/s (31)
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and hence by the result in (25), we have

E(zv/s) = (hhT )jj
∑
i

S2
v/s,i (32)

Finally, the ratio between the residual energy and the total energy is then

Rv/s =
E(zv/s)

E(s)
(33)

=
(hhT )jj

∑
i S

2
t,i

(hhT )jj
∑
i S

2
v/s,i

(34)

=

∑
i S

2
v/s,i∑

i S
2
t,i

(35)

which is independent of the waveform h. One should keep in mind that the
residual energy defined here is different from that in (6) since the null projec-
tor in (6) is constructed from the noise-weighed antenna response function Fw
instead of F here, and there is no way to derive a waveform independent en-
ergy ratio from Fw unless we assume the noise power spectral densities of the
detectors are the same. If we assume the noise power spectral densities are the
same, we will obtain exactly the same result in (35). But here, (35) just serves
as a simplified and convenient measure of the resolvability between different
polarization hypotheses.

4.2 Plots

We assume the underlying truth is a tensorial signal, and then we construct the
null projector Pvector and Pscalar at the true sky position to apply on the signal,
but since we have shown that the ratio of residual energy and total signal energy
is

Rv/s =

∑
i S

2
v/s,i∑

i S
2
t,i

(36)

, we just need to compute the ratio between the sums of the singular values
with different (α, δ) over all sky in a HLV network.
Figure 1 shows the distribution of Rv/s. It shows there is a large fraction of
sky points with a huge amount of residual energy after scalar projection, but
for vector projection, there is a significant fraction of sky points having a low
residual energy. Figure 2 shows the distribution of the ratio between vector and
scalar residual energy with respect to each sky point. The residual energy of
vector projector is smaller than that of scalar projection over a vast majority
of sky positions. This would indicate a general behavior that scalar model can
be better resolved from the tensor model than the vector model, which agrees
with our qualitative argrument. Figure 3 shows the residual energy after vector
projection over all sky. Figure 4 shows the residual energy after scalar projection
over all sky.
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Figure 1: Distribution of residual energy.
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Figure 2: Distributon of of residual energy ratio.
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Figure 3: Skymap of vector residual energy.
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Figure 4: Skymap of scalar residual energy.
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Figure 5: Distribution of Enull with different projectors.

5 Distribution of Null Energy over All Sky

We can also verify the greater distinguishing power of scalar model from the
distribution of null enegy over all sky.
Here we inject a purely tensorial signal into HLV network with design densitiv-
ity, and then we compute the null energy over all sky by the tensor projector
Pt, vector projector Pv and scalar projector Ps respectively. The likelihood
(T/V/S) (or p(d|~θ;Ht/v/s)) is the distribution of null energy when the assumed
sky position and polarization hypothesis are correct such that there is no resid-
ual signal content. The likelihood for tensor and vector hypotheses here is the χ2

probability density function with degree of freedom 200, while the likelihood for
scalar hypothesis is the χ2 probability density function with degree of freedom
400 (since in 3-detector network case, you will get double the degree of freedom
in scalar hypothesis). Despite the difference in degree of freedom, one can ob-
serve in Figure 5 the Enull of scalar projection has much less overlap with its
corresponding likelihood function i.e. Likelihood (S) which is attributed to the
in general greater distinguishing power from the tensor model than the vector
model.
If the underlying truth is purely tensorial, one should expect a more negative
log10 BST than log10 BVT in general due to the intrinsic nature of null projection
explained in section 3.
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