

Stochastic Gravitational Wave Background (SGWB)

Sources are:

- o isotropic
- independent
- point-like
- many
- far away
- Gravitational waves from such sources correlate photons' geodesics. Pulsar Timing Array (PTA) is used to observe the correlations.

HUNTING GRAVITATIONAL WAVES USING PULSARS

Pulsar Pu

1 Gravitational waves from supermassive black-hole mergers in distant galaxies subtly shift the position of Earth.

NEW MILLISECOND PULSARS

An all-sky map as seen by the Fermi Gamma-ray Space Telescope in its first year

00

3 Measuring the effect on an array of pulsars enhances the chance of detecting the gravitational waves.

The Problem of Detection

Stochastic gravitational wave behaves like noise in a PTA data set; however, it is not the only source of noise. So, how to tell if a noise is SGWB?

The First Step: Noise Analysis

The easiest way to distinguish noises from each other is through their power spectral density.

The Powerlaw Model:

Colored Noise

Terminology

- The most common colored noises in a PTA data set are:
 - Red: any noise with **positive** spectral index
 - White: any noise with zero spectral index

A Toy Model

A pulsar with only one white, one red, and one SGWB component and all deterministic signals removed All surviving signals are assumed to be random noises following a powerlaw spectral density model with SGWB noise having a spectral index of $\gamma = 13/3$ (red noise).

In reality...

- SGWB is Red, and that is a problem!
- Deterministic signals need to be removed
 - spin down period, ephemeris
 variation, pulsar sky location
 variation, equipment change,...
- Stochastic signals need to be understood and well modeled
 - SGWB, receiver noise, clock noise, interstellar medium fluctuations, ...
- Our models become computationally expensive

So, how do we do the noise analysis?

- We simply wait long enough (so far 15 years) for the red noises to dominate the white noises (at least in low frequencies)
- We focus more on the lower frequency bins of our data.
- While waiting, we constantly improve the effectiveness of our Bayesian models in detecting any trace of a Red noise process that can potentially be a SGWB.

	parameter	description
	E_k Q_k [s] J_k [s]	EFAC per bac EQUAD per l ECORR per l
	$A_{ m red} \ \gamma_{ m red}$	log-Uniform [- red-noise pow
	ρ_i [s ²]	power-spectru
	A_{CP}	broken power-
	γ_{CP}	broken-power
	δ	broken-power
	f _{bend} [Hz]	broken-power
	A_{CP}	common proc
We Detect!	γcp	common proc
	$z_{ m drift}$ [rad/yr] drift-rate of E perturbation to $\Delta M_{ m annu}$ [M_{\odot}] $\Delta M_{ m annu}$ [M_{\odot}] perturbation to perturbation to perturbation to the PCA i Spatially Co	
	Intrinsic (per pulsar)	
	Uncorr. co	ommon
	HD. com	:
	commo	
	Dipole corr. common	
	Monopole commo	

log-Uniform [-20, -11]one parameter per pulsar red-noise power-law spectral index Uniform [0, 7] one parameter per pulsar common process, free spectrum uniform in $\rho_{\cdot}^{1/2}$ [10⁻¹⁸, 10⁻⁸]^a power-spectrum coefficients at f = i/Tone parameter per frequency common process, broken-power-law spectrum broken power-law amplitude log-Uniform [-18, -14] ($\gamma_{CP} = 13/3$) one parameter for PTA log-Uniform [-18, -11] (γ_{CP} varied) one parameter for PTA broken-power-law low-freq. spectral index delta function ($\gamma_{common} = 13/3$) fixed Uniform [0, 7] one parameter per PTA broken-power-law high-freq, spectral index delta function ($\delta = 0$) fixed broken-power-law bend frequency log-Uniform [-8.7, -7]one parameter for PTA common process, power-law spectrum log-Uniform [-18, -14] ($\gamma_{\rm CP} = 13/3$) one parameter for PTA common process strain amplitude

prior

Uniform [0, 10]

log-Uniform [-8.5, -5]

log-Uniform [-8.5, -5]

White Noise

Red Noise

EFAC per backend/receiver system

EQUAD per backend/receiver system

ECORR per backend/receiver system

common process power-law spectral index

perturbation to Jupiter's mass

perturbation to Saturn's mass

perturbation to Uranus' mass

perturbation to Neptune's mass

ith PCA component of Jupiter's orbit

drift-rate of Earth's orbit about ecliptic z-axis

2A

2B

2C

delta function ($\gamma_{\rm CP} = 13/3$) fixed Uniform [0, 7] one parameter for PTA BAYESEPHEM Uniform $[-10^{-9}, 10^{-9}]$ one parameter for PTA

log-Uniform [-18, -11] ($\gamma_{\rm CP}$ varied)

 $\mathcal{N}(0, 1.55 \times 10^{-11})$ one parameter for PTA $\mathcal{N}(0, 8.17 \times 10^{-12})$ $\mathcal{N}(0, 5.72 \times 10^{-11})$ $\mathcal{N}(0, 7.96 \times 10^{-11})$

2D

Credit: NANOGrav 11 Year and 12.5 Year (draft) papers

one parameter for PTA Uniform [-0.05, 0.05]Spatially Correlated Red-noise Processes Used in Our Analysis

Model

3A

3C

3D

comments

single-pulsar analysis only

single-pulsar analysis only

single-pulsar analysis only

one parameter for PTA

