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Introduction



Motivation

Figure 1: The strain sensitivity of the LIGO detectors is currently limited
above approximately 200 Hz by quantum noise.1

1Publicly available image at https://www.ligo.caltech.edu/
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Motivation

Squeezed states of light: our saviour
∆A∆ϕ ≥ ℏ

2 → Unevenly distributed

3 dB ↑ =⇒ 3 × Event Rate!
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Limitations

What is limiting the effective level of squeezing?

Optical losses

↓

What do optical losses result in?

Squeezed→ squeezed + unsqueezed

↓

What is causing these losses?

Mode-mismatches! (More than 10% in aLIGO[1])

↓

What causes these mode-mismatches?

Perturbation in apparatus (R = 5.932418 m?!)
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The Project

Can we find an optimal set of design parameters such that the
interferometer becomes minimally sensitive to design
perturbations?

Perturbations→ curvatures and positions of the optical elements
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Background



Spatial Modes[2, 3]

Laser beam→ Spatial intensity distribution

E(t, x, y, z) =
∑
j

∑
n,m

ajnm unm(x, y, z) exp(i(ωjt− kjz)) (1)

unm(x, y, z) → set of Hermite-Gauss (HG) or Laguerre-Gauss (LG)
polynomials

Figure 2: unm spatial distributions in the LG basis
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The Fundamental Gaussian Mode

Figure 3: Intensity pattern of a Gaussian beam (le t) and the intensity and
amplitude distributions of a normalised Gaussian beam (right).[3]
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Cavity Eigenmode and Mode-Mismatch

Figure 4: Cavity eigenmode: The beam curvature must be equal to the
curvature of the mirrors at the mirror positions.[3]
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Goals



Goals

• Algorithm for numerically optimising any optical setup
• Implement algorithm to optimise the aLIGO design
• Analytic formalism to calculate loss
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Analytic Formalism



Aim

To develop an analytic formalism to calculate the total
mode-matching loss in a complex optical system as a function of
small perturbations of the optic positions and curvatures.
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Optical Field Vector

Small curvature and position perturbations: LG00 ↔ LG10[4, 1]

Electric field at any point

|Ψ⟩ =

(
α

β

)
= α |LG00⟩+ β |LG10⟩ (2)
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Mode-Mixing Matrices

|Ψout⟩ = A2 × A1 × A0 × |Ψin⟩ (3)
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Formalism and Simulations: Do They Agree?

Figure 5: Fabry-Perot cavity before the OMC.

13



Formalism and Simulations: Do They Agree?
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Figure 6: Analytic and simulation results for power loss percentage as a
function of curvature perturbation percentage at M2.
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Formalism and Simulations: Do They Agree?
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Figure 7: Analytic and simulation results for power loss percentage as a
function of position perturbation percentage at M2.
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Numerical Optimisation of the
aLIGO System



Optimising the aLIGO System

Figure 8: aLIGO setup
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Optimising the Signal Recycling Cavity

Figure 9: aLIGO X-arm cavity and Signal Recycling Cavity (SRC)
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Optimisation Routine - Particle Swarm Optimisation

Ensure the setup is mode-matched

↓

Ensure beam-size remains small (< 1cm) and total length of the SRC
remains fixed

↓

Perturb curvature and position of SRC mirrors and observe
degradation in squeezing level2

↓

Minimise this degradation

2Laser and squeezer inputs remain mode-matched to the unperturbed cavity
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Monte Carlo Analysis for the Expected Squeezing Level

• ∆R ∼ N(µ = 0, σ = 0.01R) and ∆z ∼ N(µ = 0, σ = 3mm), where
∼ N indicates a normal distribution.

• Repeat 1,000 times
• Plot probability distribution of the squeezing level
• Compute the 85th percentile
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Expected Squeezing Level for aLIGO SRC

Effective squeezing level of unperturbed cavity = 9.8dB
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Figure 10: Monte Carlo analysis for perturbed cavity

RSR3 RSR2 RSRM LSR3 LSR2 LSR1

aLIGO (m) 35.97 -6.41 -5.69 19.37 15.44 15.76 20



Pertrubation Analysis for RSRC

Effective squeezing level of unperturbed cavity = 9.8dB
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Figure 11: Perturbing only the RSRC

RSR3 RSR2 RSRM LSR3 LSR2 LSR1

aLIGO (m) 35.97 -6.41 -5.69 19.37 15.44 15.76 21



Expected Squeezing Level for Optimised SRC

Effective squeezing level of unperturbed cavity = 9.7dB
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Figure 12: Monte Carlo analysis for perturbed cavity

RSR3 RSR2 RSRM LSR3 LSR2 LSR1

Optimised (m) 59.66 -233.60 -3.53 27.69 18.98 9.87 22



Conclusion



Conclusion

• Developed algorithm to minimise sensitivity of any optical setup.
• Optimised the aLIGO Signal Recycling Cavity
• Quantified the improvement.
• Developed analytic formalism.
• Checked agreement between formalism and simulations.
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Next Steps



Further Work

The next steps for this project are:

• Apply to the entire aLIGO setup.
• Take into account the LIGO thermal compensation system.
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Thank You
My sincere thanks and gratitude to my mentors and to LIGO Laboratory for giving me

this opportunity.
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Questions?
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Reference Slides

Helmholtz equation:

∇2E− Ë
c2 = 0 (4)

The fundamental Gaussian mode at a position z:

u00(r, z) =
√
2
π

1
ω(z) exp(ιψ(z)) exp

[
−r2

(
1

w2(z) + ι
π

λR(z)

)]
(5)



Reflection Matrix

Reflection from a mirror having amplitude reflectivity coefficient r

r =
(
r 0
0 r

)
(6)

Modified reflection matrix for a small curvature perturbation δR in a
mirror of curvature R

r′ = a.r =
(
r
√
1− a2 −ιra
−ιra r

√
1− a2

)
, a =

πω2(zm)
2λR2 δR (7)

where ω(zm) is the beam size at the mirror position zm



Transmission Matrix

The scattering matrix for transmission of a beam through a mirror
having amplitude transmissivity coefficient t is given by

t =
(
t 0
0 t

)
(8)



Propagation Matrix

If one the one-way propagation of a beam across a distance or cavity
accumulates a phase ϕ0 in the LG00 mode and ϕ1 in the LG10 mode,
this phase accumulation during propagation can be represented by
the scattering matrix

ϕ =

(
eιϕ0 0
0 eιϕ1

)
(9)

The modified propagation matrix for a small position perturbation δz
in a mirror of radius of curvature R

ϕ′ = b.ϕ =

(√
1− b2eιϕ0 −beιϕ1
−beιϕ0

√
1− b2eιϕ1

)
, b =

δz
R (10)
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