

Minimising the Effect of Mirror Perturbations on Quantum Decoherence

LIGO SURF 2020

Swadha Pandey

Mentors: Jonathan Richardson, Rana Adhikari, Annalisa Allocca

Outline

- 1. Introduction
- 2. Background
- 3. Goals
- 4. Analytic Formalism
- 5. Numerical Optimisation of the aLIGO System
- 6. Conclusion
- 7. Further Work

Introduction

Motivation

Figure 1: The strain sensitivity of the LIGO detectors is currently limited above approximately 200 Hz by quantum noise.¹

¹Publicly available image at https://www.ligo.caltech.edu/

Squeezed states of light: our saviour $\Delta A \Delta \phi \geq \frac{\hbar}{2} \rightarrow$ Unevenly distributed

3 dB $\uparrow \Longrightarrow$ 3 \times Event Rate!

What is limiting the effective level of squeezing?

What is limiting the effective level of squeezing?

Optical losses

What do optical losses result in?

What is limiting the effective level of squeezing? Optical losses \downarrow What do optical losses result in? Squeezed \rightarrow squeezed + unsqueezed \downarrow What is causing these losses? What is limiting the effective level of squeezing? **Optical losses** What do optical losses result in? Squeezed \rightarrow squeezed + unsqueezed What is causing these losses? Mode-mismatches! (More than 10% in aLIGO^[1]) What causes these mode-mismatches?

What is limiting the effective level of squeezing? **Optical losses** What do optical losses result in? Squeezed \rightarrow squeezed + unsqueezed What is causing these losses? Mode-mismatches! (More than 10% in aLIGO^[1]) What causes these mode-mismatches? Perturbation in apparatus (R = 5.932418 m?!)

Can we find an optimal set of design parameters such that the interferometer becomes minimally sensitive to design perturbations?

Perturbations \rightarrow curvatures and positions of the optical elements

Background

Laser beam \rightarrow Spatial intensity distribution

$$E(t, x, y, z) = \sum_{j} \sum_{n,m} a_{jnm} u_{nm}(x, y, z) \exp(i(\omega_j t - k_j z))$$
(1)

 $u_{nm}(x, y, z) \rightarrow \text{set of Hermite-Gauss (HG) or Laguerre-Gauss (LG)}$ polynomials

Figure 2: *u_{nm}* spatial distributions in the LG basis

The Fundamental Gaussian Mode

Figure 3: Intensity pattern of a Gaussian beam (left) and the intensity and amplitude distributions of a normalised Gaussian beam (right).^[3]

Cavity Eigenmode and Mode-Mismatch

Figure 4: Cavity eigenmode: The beam curvature must be equal to the curvature of the mirrors at the mirror positions.^[3]

Goals

- Algorithm for numerically optimising any optical setup
- Implement algorithm to optimise the aLIGO design
- Analytic formalism to calculate loss

Analytic Formalism

To develop an analytic formalism to calculate the total mode-matching loss in a complex optical system as a function of small perturbations of the optic positions and curvatures.

Small curvature and position perturbations: $LG_{00} \leftrightarrow LG_{10}^{[4, 1]}$ Electric field at any point

$$|\Psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |LG_{00}\rangle + \beta |LG_{10}\rangle$$
(2)

Mode-Mixing Matrices

$$|\Psi_{\rm out}\rangle = A_2 \times A_1 \times A_0 \times |\Psi_{\rm in}\rangle$$
 (3)

Formalism and Simulations: Do They Agree?

Figure 5: Fabry-Perot cavity before the OMC.

Formalism and Simulations: Do They Agree?

Figure 6: Analytic and simulation results for power loss percentage as a function of curvature perturbation percentage at M2.

Formalism and Simulations: Do They Agree?

Figure 7: Analytic and simulation results for power loss percentage as a function of position perturbation percentage at M2.

Numerical Optimisation of the aLIGO System

Optimising the aLIGO System

Figure 8: aLIGO setup

Optimising the Signal Recycling Cavity

Figure 9: aLIGO X-arm cavity and Signal Recycling Cavity (SRC)

²Laser and squeezer inputs remain mode-matched to the unperturbed cavity

- Δ*R* ~ *N*(μ = 0, σ = 0.01*R*) and Δ*z* ~ *N*(μ = 0, σ = 3mm), where ~ *N* indicates a normal distribution.
- Repeat 1,000 times
- Plot probability distribution of the squeezing level
- Compute the $85^{\rm th}$ percentile

Expected Squeezing Level for aLIGO SRC

Effective squeezing level of unperturbed cavity = 9.8dB

Figure 10: Monte Carlo analysis for perturbed cavity

	$R_{\rm SR3}$	$\mathrm{R}_{\mathrm{SR2}}$	$\mathbf{R}_{\mathrm{SRM}}$	$L_{\rm SR3}$	$L_{\rm SR2}$	$L_{\rm SR1}$
aLIGO (m)	35.97	-6.41	-5.69	19.37	15.44	15.76

20

Pertrubation Analysis for R_{SRC}

Effective squeezing level of unperturbed cavity = 9.8dB

Figure 11: Perturbing only the R_{SRC}

	$R_{\rm SR3}$	$\mathrm{R}_{\mathrm{SR2}}$	$\mathbf{R}_{\mathrm{SRM}}$	$L_{\rm SR3}$	$L_{\rm SR2}$	$L_{\rm SR1}$
aLIGO (m)	35.97	-6.41	-5.69	19.37	15.44	15.76

21

Expected Squeezing Level for Optimised SRC

Effective squeezing level of unperturbed cavity = 9.7dB

Figure 12: Monte Carlo analysis for perturbed cavity

	$\mathrm{R}_{\mathrm{SR3}}$	R_{SR2}	$\mathbf{R}_{\mathrm{SRM}}$	$L_{\rm SR3}$	L_{SR2}	${\rm L}_{{ m SR1}}$
Optimised (m)	59.66	-233.60	-3.53	27.69	18.98	9.87

22

Conclusion

- Developed algorithm to minimise sensitivity of any optical setup.
- Optimised the aLIGO Signal Recycling Cavity
- Quantified the improvement.
- Developed analytic formalism.
- Checked agreement between formalism and simulations.

Next Steps

The next steps for this project are:

- Apply to the entire aLIGO setup.
- Take into account the LIGO thermal compensation system.

Thank You

My sincere thanks and gratitude to my mentors and to LIGO Laboratory for giving me this opportunity.

Questions?

Helmholtz equation:

$$\nabla^2 \mathsf{E} - \frac{\ddot{\mathsf{E}}}{c^2} = 0 \tag{4}$$

The fundamental Gaussian mode at a position z:

$$u_{00}(r,z) = \sqrt{\frac{2}{\pi}} \frac{1}{\omega(z)} \exp(\iota\psi(z)) \exp\left[-r^2\left(\frac{1}{w^2(z)} + \iota\frac{\pi}{\lambda R(z)}\right)\right]$$
(5)

Reflection from a mirror having amplitude reflectivity coefficient r

$$\mathbf{r} = \begin{pmatrix} r & 0\\ 0 & r \end{pmatrix} \tag{6}$$

Modified reflection matrix for a small curvature perturbation δR in a mirror of curvature R

$$\mathbf{r}' = \mathbf{a}.\mathbf{r} = \begin{pmatrix} r\sqrt{1-a^2} & -\iota ra\\ -\iota ra & r\sqrt{1-a^2} \end{pmatrix}, \quad a = \frac{\pi\omega^2(z_m)}{2\lambda R^2}\delta R$$
(7)

where $\omega(z_m)$ is the beam size at the mirror position z_m

The scattering matrix for transmission of a beam through a mirror having amplitude transmissivity coefficient *t* is given by

$$\mathbf{t} = \begin{pmatrix} t & 0\\ 0 & t \end{pmatrix} \tag{8}$$

If one the one-way propagation of a beam across a distance or cavity accumulates a phase ϕ_0 in the LG_{00} mode and ϕ_1 in the LG_{10} mode, this phase accumulation during propagation can be represented by the scattering matrix

$$\phi = \begin{pmatrix} e^{\iota\phi_0} & 0\\ 0 & e^{\iota\phi_1} \end{pmatrix} \tag{9}$$

The modified propagation matrix for a small position perturbation δz in a mirror of radius of curvature *R*

$$\phi' = \mathbf{b}.\phi = \begin{pmatrix} \sqrt{1 - b^2} e^{\iota \phi_0} & -b e^{\iota \phi_1} \\ -b e^{\iota \phi_0} & \sqrt{1 - b^2} e^{\iota \phi_1} \end{pmatrix}, \quad b = \frac{\delta z}{R}$$
(10)

References

- A. Perreca, A. F. Brooks, J. W. Richardson, D. Töyrä, and R. Smith, "Analysis and visualization of the output mode-matching requirements for squeezing in Advanced LIGO and future gravitational wave detectors," *Phys. Rev. D*, vol. 101, p. 102005, May 2020.
- H. Kogelnik and T. Li, "Laser beams and resonators," *Appl. Opt.*, vol. 5, pp. 1550–1567, 10 1966.
- C. Bond *et al.,* "Interferometer techniques for gravitational-wave detection," *Living Rev Relativ*, vol. 19, no. 3, 2016.
- D. Z. Anderson, "Alignment of resonant optical cavities," *Appl. Opt.*, vol. 23, pp. 2944–2949, Sep 1984.