This notebook generates figures 11 and 12 for GW190521 Implications paper Properties and astrophysical implications of the 150 Msun binary black hole merger GW190521 avaliable through ApjL, DCC and arXiv.
The data used in this notebook can be downloaded from the public DCC page LIGO-P2000158.
%matplotlib inline
# generic imports
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from scipy import stats
from scipy.integrate import trapz
import json
import os
import corner
import seaborn as sns
# suppress ignorable warnings
import warnings
warnings.simplefilter('ignore', category=UserWarning)
# ligo-specific imports
import bilby # https://pypi.org/project/bilby/
# set up color map, fonts, etc
color_array = sns.color_palette("colorblind", n_colors=10, desat=.7)
cmap = sns.color_palette("RdBu_r", 26).as_hex()
cmap = cmap[:-1]
params = {
# latex
'text.usetex': True,
# fonts
'font.family': 'serif',
# figure and axes
'figure.figsize': (14,7),
'figure.titlesize': 35,
'axes.grid': False,
'axes.titlesize':20,
#'axes.labelweight': 'bold',
'axes.labelsize': 40,
# tick markers
'xtick.direction': 'in',
'ytick.direction': 'in',
'xtick.labelsize': 16,
'ytick.labelsize': 16,
'xtick.major.size': 10.0,
'ytick.major.size': 10.0,
'xtick.minor.size': 3.0,
'ytick.minor.size': 3.0,
# legend
'legend.fontsize': 20,
'legend.frameon': False,
#'legend.framealpha':1.0,
# colors
'image.cmap': 'viridis',
# saving figures
'savefig.dpi': 300
}
plt.rcParams.update(params)
plt.rcParams['font.serif'] = ['Computer Modern', 'Times New Roman']
plt.rcParams['font.family'] = ['serif', 'STIXGeneral']
plt.rcParams['savefig.bbox'] = 'tight'
plt.rcParams['text.latex.preamble'] = [r'\usepackage{amsmath}'] #for \text command
plt.rcParams.update({'font.size': 22})
#---------------------
# plotting functions
#---------------------
def set_ticks(data,axes):
fontsize=14
N = len(data.T)
cols = np.array([i + N*np.array(range(N)) for i in range(N) ])
for ii,col in enumerate(cols):
tick_labels, major_ticks, minor_ticks = get_ticks(data.T[ii])
for jj in range(ii,N):
axes[col[jj]].set_xticks(major_ticks)
#axes[col[jj]].set_xticks(minor_ticks,minor=True)
if jj == N-1: axes[col[jj]].set_xticklabels(tick_labels,fontsize=fontsize)
for ii, row in enumerate(cols.T[1:]):
tick_labels, major_ticks, minor_ticks = get_ticks(data.T[ii+1])
for jj in range(ii+1):
#print(jj)
axes[row[jj]].set_yticks(major_ticks)
#axes[row[jj]].set_yticks(minor_ticks,minor=True)
if jj==0: axes[row[jj]].set_yticklabels(tick_labels,fontsize=fontsize)
def get_ticks(d):
min_tick = int(round(min(d)))-1
max_tick = int(round(max(d)))+1
major_ticks = list(range(min_tick,max_tick))
if len(major_ticks)>10:
major_ticks = [major_ticks[i] for i in range(len(major_ticks)) if i % 3 == 0]
elif len(major_ticks)>7:
major_ticks = [major_ticks[i] for i in range(len(major_ticks)) if i % 2 == 0]
tick_labels = ['$10^{'+str(tick)+'}$' for tick in major_ticks]
minor_ticks=[]
for tick in major_ticks:
minor_ticks.extend([np.log10(i*10**tick) for i in range(2,10)])
return tick_labels, major_ticks, minor_ticks
def getCL(Z,CL):
zf = Z.flatten()
zsort = np.argsort(zf)[::-1]
levels=[]
for cl in CL:
zsum = 0
zlast = 0
j=0
while zsum/np.sum(zf)<=CL:
max_i = zsort[j]
j+=1
zlast=zf[max_i]
zsum+=zf[max_i]
levels.append(zlast)
return levels
#Load in result files
rdir = 'GW190521_Implications_figure_data/hierarchical_data/'
result = bilby.core.result.read_in_result(rdir+'gwtc1_plus_NRSur/gauss_result.json')
result_no = bilby.core.result.read_in_result(rdir+'gwtc1_plus_no_zero_spin_NRSur/gauss_result.json')
gamma1_5 = result.posterior['branching_ratio_1_5'].values
gamma2 = result.posterior['branching_ratio_2'].values
delta_chi = result.posterior['delta_chi'].values
gamma1_5_no = result_no.posterior['branching_ratio_1_5'].values
gamma2_no = result_no.posterior['branching_ratio_2'].values
#For non-zero-spin runs, delta_chi is zero, which will mess up the plot ranges.
#Load in the with-zero-spin posterior, we'll delete those lines later
delta_chi_no = result.posterior.sample(len(gamma2_no),replace=True)['delta_chi'].values
#We want to plot in log
data = np.array([np.log10(delta_chi),np.log10(gamma1_5), np.log10(gamma2)]).T
data_no = np.array([np.log10(delta_chi_no),np.log10(gamma1_5_no), np.log10(gamma2_no),]).T
labels = [r'$\lambda_{0}$',r'$\frac{\mathcal{R}_{1g+2g}}{\mathcal{R}_{1g+1g}}$',r'$\frac{\mathcal{R}_{2g+2g}}{\mathcal{R}_{1g+1g}}$']
labels_no = [r'$\lambda_{0}$',r'$\frac{\mathcal{R}_{1g+2g}}{\mathcal{R}_{1g+1g}}$',r'$\frac{\mathcal{R}_{2g+2g}}{\mathcal{R}_{1g+1g}}$']
plot_parameter_keys = ['branching_ratio_1_5','branching_ratio_2']
kwargs = dict(labels=labels,
bins=50, smooth=0.9, label_kwargs=dict(fontsize=30),
title_kwargs=dict(fontsize=20), color='#0072C1',
truth_color='tab:orange', quantiles=None,
levels=(1 - np.exp(-0.5), 1 - np.exp(-2), 1 - np.exp(-9 / 2.)),
plot_density=False, plot_datapoints=True, fill_contours=True,
max_n_ticks=5)
#Plot with-zero-spin results
fig = corner.corner(data, **kwargs,hist_kwargs=dict(density=True,label='With zero-spin'))
kwargs['color'] = color_array[1]
kwargs['labels'] = labels_no
#Plot without-zero-spin results
no =corner.corner(data_no,**kwargs,hist_kwargs=dict(density=True,label='Without zero-spin'),fig=fig)
#Delete all points associated with without-zero-spin delta_chi
axes = fig.get_axes()
axes[3].lines[1].remove()
for coll in axes[3].collections[-8:]:
coll.remove()
axes[6].lines[1].remove()
for coll in axes[6].collections[-8:]:
coll.remove()
axes[0].patches[1].remove()
#Manually set ticks
set_ticks(data,axes)
lines=[]
#Create legend
lines.append(matplotlib.lines.Line2D([0], [0], color='#0072C1'))
lines.append(matplotlib.lines.Line2D([0], [0], color=color_array[1]))
labels = ['With zero-spin channel','Without zero-spin channel']
axes[1].legend(lines,labels,loc=2)
#Set plot limits
dchi_min = -2.75
dchi_max = 0
r15_min = -4.5
r15_max = 0
r2_min = -9.5
r2_max = 0
#dchi
axes[0].set_xlim(dchi_min,dchi_max)
axes[3].set_xlim(dchi_min,dchi_max)
axes[6].set_xlim(dchi_min,dchi_max)
#r15
axes[3].set_ylim(r15_min,r15_max)
axes[4].set_xlim(r15_min,r15_max)
axes[7].set_xlim(r15_min,r15_max)
axes[6].set_ylim(r2_min,r2_max)
axes[7].set_ylim(r2_min,r2_max)
axes[8].set_xlim(r2_min,r2_max)
axes[4].set_ylim(0,1.5)
axes[8].set_ylim(0,0.75)
axes
fig.set_figheight(9)
fig.set_figwidth(9)
filename = 'GW190521_Implications_Figures_pdf/relative_rates.pdf'
fig.savefig(filename,dpi=200)
fig.show()
# process BF vs m,a with contours - NRSur
event = 'GW190521'
result = 'gwtc1_plus_no_zero_spin_NRSur'
#Load PE samples
with open(os.path.join(rdir,result,'full_pe_samples.json'),'r') as f:
posteriors = json.load(f)
posterior = posteriors[event][-1]['final_samples']
m_post = posterior['mass_1']
a_post = posterior['a_1']
ma_post = [m_post,a_post]
#Create 2D KDE over M1, A1
kde_post = stats.gaussian_kde(ma_post)
#load ppds
with open(os.path.join(rdir,result,'gauss_ppds.json'),'r') as f:
ppds = json.load(f)
#Create grid to evaluate kdes on
a1s = a2s = ppds['a1s']
m1s = ppds['m1s']
M,A = np.meshgrid(m1s,a1s)
#Evaluate GW190521 M1,A1 kde and get 90% contours
Zpost = np.reshape(kde_post(np.vstack([M.ravel(),A.ravel()])).T, M.shape)
levels90=getCL(Zpost,[0.9])
levels68=getCL(Zpost,[0.68])
#Avoid taking log10(0)
ppd1g, ppd15g, ppd2g = [np.array(ppds[key]['a1m1']) +1e-30 for key in ('1G','1.5G','2G')]
#Check everything's normalized
print('Norm =',trapz(trapz(ppd2g,m1s),a1s))
#Take log10 of Bayes Factor
Z = np.log10(ppd2g/ppd1g)
# process BF vs m,a with contours - Phenom
event = 'GW190521'
result = 'gwtc1_plus_no_zero_spin_IMRPv3HM'
#load ppds
with open(os.path.join(rdir,result,'gauss_ppds.json'),'r') as f:
ppds = json.load(f)
#Create grid to evaluate kdes on
a1s = a2s = ppds['a1s']
m1s = ppds['m1s']
M,A = np.meshgrid(m1s,a1s)
#Avoid taking log10(0)
ppd1g, ppd15g, ppd2g = [np.array(ppds[key]['a1m1']) +1e-30 for key in ('1G','1.5G','2G')]
#Check everything's normalized
print('Norm =',trapz(trapz(ppd2g,m1s),a1s))
#Take log10 of Bayes Factor
Z = np.log10(ppd2g/ppd1g)
# make the BF figure with both NRSur and Phenom
plt.figure(figsize=(10,8))
ax = plt.subplot(1,1,1)
lines = []
colors=["#7570b3", "#d95f02"]
labels = ['NRSur PHM', 'Phenom PHM']
results = ['gwtc1_plus_no_zero_spin_NRSur','gwtc1_plus_no_zero_spin_IMRPv3HM']
color_dict = dict(zip(results,colors))
label_dict = dict(zip(results,labels))
lw=3
for result in results:
with open(os.path.join(rdir,result,'full_pe_samples.json'),'r') as f:
posteriors = json.load(f)
posterior = posteriors[event][-1]['final_samples']
m_post = posterior['mass_1']
a_post = posterior['a_1']
ma_post = [m_post,a_post]
#Create 2D KDE over M1, A1
kde_post = stats.gaussian_kde(ma_post)
Zpost = np.reshape(kde_post(np.vstack([M.ravel(),A.ravel()])).T, M.shape)
levels90=getCL(Zpost,[0.9])
levels68=getCL(Zpost,[0.68])
CS = ax.contour(M,A,Zpost,levels=levels90,colors= color_dict[result],linewidths=lw,zorder=2)
CS68 = ax.contour(M,A,Zpost,levels=levels68,colors=color_dict[result],linestyles='--',linewidths=lw,zorder=2)
#Create legend
lines.append(matplotlib.lines.Line2D([0], [0], color=color_dict[result]))
ax.legend(lines,labels, loc=2,fontsize=18)
contour= ax.contourf(m1s,a1s,Z, vmin=-24, levels=np.arange(-25,27,2),colors=cmap)
ax.set_xlabel('$m_1 (M_{\odot})$', fontsize=22)
ax.set_ylabel('$\chi_1$',fontsize=22)
cb = plt.colorbar(contour,orientation='horizontal', ticks=list(range(-24,26,4)))
cb.set_label(label=r"$\log_{10} \left[\frac{P(m_1,\chi_1|xg+2g)}{P(m_1,\chi_1|1g+1g)} \right] $",fontsize=26)
ax.set_xlim([30,160])
filename = 'GW190521_Implications_Figures_pdf/hierarchical_bayes_factor.pdf'
plt.savefig(filename,dpi=200)
fig.show()