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1 Introduction

Broadly speaking, the sensitivity of aLIGO is determined by two kinds of noise sources, an
unsubtractable one and a subtractable one. The former originates from quantum or thermal
fluctuations and shows up only in the main GW readout channel. It cannot be distinguished
from the GW signal and thus sets a fundamental limit of the instrument’s sensitivity. On the
other hand, the latter one is due to cross-couplings from the auxiliary control loops and/or
some environmental perturbations like the seismic motion. The perturbations causing excess
noises in DARM are also continuously recorded in (tens of thousands of) auxiliary channels,
and therefore can in principle be used to reconstruct and then clean up the contamination
showing up in the main GW readout.
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FIGURE 1: Noise budget of aLIGO [1]. In the 10— 100 Hz band, the sensitivity is limited by predictable noises
(i.e., noises that are not due to quantum or thermal fluctuations) and thus indicates a large room
of potential improvement. The Expected Noise’ trace is the quadrature sum of all budgeted noise
sources and ’Measure noise’ is the actual output of the LIGO detector.

In Figure 1 we show the noise budget of aLIGO in its first observing run [1]. As can be seen
from the plot, aLIGO’s sensitivity does not reach its fundamental limit set by the quantum
and thermal noises until 100 Hz. In fact, the total noise (the red "Measured Noise" trace
in Figure 1) in the 10—-20 Hz band the noise is nearly two orders of magnitude above its
fundamental limit determined by the quantum (the grey "Quantum Noise" trace) and thermal
noise (the blue "Thermal Noise" trace).
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Our goal, as illustrated in the flow diagram in Figure 2, is to develop machine-learning-based
nonlinear regression techniques to remove the auxiliary channels’ contamination to the GW
channel, and hence improve the aLLIGO sensitivity in the sub— 100 Hz band.
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FIGURE 2: Flow diagram of signal and noise propagation. While the original perturbations of the subtractable
noises are recorded, identifying their couplings to the main GW readout is challenging. In part,
this is due to the large number of channels involved (thousands to tens of thousands). More
importantly, the couplings often have both linear and nonlinear components, and hence cannot
be removed with classical linear regression methods. Instead, our goal is to develop machine-
learning-based nonlinear regression techniques to use time series from the auxiliary channels to
construct the disturbance and then remove it from the main GW readout.

2 Examples of Nonlinear Coupling Mechanisms
How a noise source propagates to the main GW readout is often a complicated (and sometimes
unknown) process. We show in Figure 3 two examples of typical nonlinear noise coupling

that happens in aLIGO.

In the left panel, the angular motion of the mirror and the beam spot motion can couple
to create a length signal that mimics the GW. If the beam spot is displaced Ay from the
rotational pivot and the mirror is rotated by A#, it creates a fluctuation in length, AL,

AL(#) = Ay(H)A6(t)
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where the quantities are defined in Figure 3a. In this case, the contamination is the product
of two auxillary noise sources (LIGO doesn’t directly measure Ay but it can be inferred from
other channels).

Another important noise is due to backscattering, which is illustrated in the right panel.
Because of defects of a mirror’s surface, it can scatter off some light from the main beam (in
Figure 3b this occurs at the end test mass EX, but it can also occur at other optics). The stray
lights may reflect upon some scattering objects (e.g., chamber walls) and recombined to the
main beam. This process creates light fields AE whose phase is shifted with respect to the
main field £y by an amount of

Ax(t
4 250

AE
—(t) x exp

£, ; (2)

where A is the laser’s wavelength and Ax(¢) is the relative displacement between the mirror
and scattering objects. When Ax(¢) 2 A, the scattered field AE(¢) becomes nonlinear and can
up-scatter the large, low-frequency seismic motion into the band of GW readout.
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(B) Laser light scattered out of the main interferometer by rough-
(A) Coupling of mirrors’ angular fluctua- ness of the mirrors recombines with the main system after
tions to GW strain [2]. being modulated by environmental vibrations [3, 4, 5].

FIGURE 3: Examples of nonlinear noise coupling in LIGO.

3 Noise regression with Neural Networks
Before tackling real data, we simplify the problem by working with mock data sets that
mimic the real interferometer. Each of our mock data sets consists of:

* A target channel, which is a time-series containing simulated noise in the GW
readout, also called DARM in the context of interferometers.

* Witness channels, which are the time series necessary to predict the target channel.
They correspond to a subset of hundreds to thousands of auxiliary channels in LIGO.
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* A cost function, which can be either the root-mean-squared (RMS) value of the

cleaned DARM time-series, or the power spectral density of DARM with appropriate
frequency-dependent weighting.

We increase the complexity of the mock data sets as we have success. Some of the complica-
tions built into are mock data sets include:

* Imperfect witnesses. Certain quantities like the beam’s location on a mirror or the

motion of the exact scattering point (as we don’t know its exact location), are often
not directly measured. Instead, they themselves need to be first inferred from other
channels (e.g., the spot location on a mirror may be contained in a combination of
seismometers and angular sensors; the motion of the unknown scattering point can be
interpolated from a sets of accelerometers nearby).

Frequency dependent filtering. The auxillary channels (which are measured in
digital counts) often require linear, frequency-dependent filtering to become physically
relevant quantities like the longitudinal or angular motion of the mirror.

We try to find a neural network that can efficiently predict the target channel from the
witness channels for all of our mock data sets. So far we have found that

1D convolutional neural networks perform well, especially for learning phase shifts
and frequency-dependent filtering.

Dense layers with nonlinear activation functions are useful for learning nonlinear
couplings between channels

Dropout layers are necessary to prevent overfitting.

Besides brute-force deep filtering with a generic nonlinear activation function, a promising
direction to further enhance the performance of a neural network is to utilize our knowledge
(section 2) of the physical model into the design of the network.

4
1.

2.

Reinforcement Learning for Feedback Controls
the LIGO control systems are generally static, linear, and designed ‘by hand’

the noise below 60 Hz is polluted by noise from these control systems
(a) this is mostly due to the angular controls

(b) feedback to the Signal Recycling mirror also contributes

3. better feedback/feedforward should be able to reduce this noise

(a) possibly through design of a better linear controller

(b) more likely through non-linear feedback
A toy example would be an adaptive controller whose control bandwidth is adjusted
according to the RMS motion of the input disturbance.

(c) nonlinear synthesis of the loop error signal incorporating environmental signals

(d) similar to many of the ‘Classic Control’ problems in the openai framework
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4. better and more robust feedback control is necessary if we want to increase the power
input to LIGO to reduce its high-frequency shot noise.

5. need to define the cost function correctly
6. LIGO team needs to define the opto-mechanical plant better

7. the control should be performed in a multiple-input-multiple-output sense

A Astrophysical Motivations
Astrophysically, removing the excess noise in the sub—100 Hz band will have significant
outcomes, including

* detecting intermediate-mass black holes (IMBHs);
¢ early-warning of binary neutron star (BNS) mergers;
* constraining binary black hole (BBH) formation channel via eccentricity measurements;
* and many more.
For example, the gravitational-wave signal of a black hole binary has a characteristic fre-
quency scale given by
3 100M
2]
1+z Mtot

where z is the cosmological redshift and M, is the total mass of the system. Therefore,
in order to detect massive binaries (especially those including at least one IMBH) at high
cosmological redshifts, it is critical to improve the low-frequency sensitivity that is limited by
predictable noises.

f merger = 0

More quantitatively, we note that the singal-to-nosie ratio (SNR) of a GW event can be

written as
fR*(HHh(f)
Sn(f)

where A(f) is the frequency-domain GW waveform and S, (f) is the power spectral density of
the noise. We can hence define 0
o _ 1RO

Sn(f) ’
as a density that measures the contribution to the total SNR per logf.

SNR? =4 dlogf, (4)

o (5)

We show the detection horizon (the distance at which a GW event has an SNR> 8 with
optimal orientation) as a function of the detector-frame total mass in Fig. 4 (assuming the
binary has an equal mass). In order to detect systems with (1 + z)My = 300 M, (which can
be intrinsically massive systems involving IMBHs or can be systems at high cosmological
redshift), it is critical to improve the low-frequency sensitivity. For a system with total mass
of (1+2z)My = 300 M, in the detector frame, the SNR can be improved by 40% if our machine
learning technique eventually cleans contamination in the low-frequency region. This means
amplifying the search volume of such systems by a factor of ~1.43 ~2.7.
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FIGURE 4: Detection horizon as a function of the detector-frame total mass of a binary. Here we further
assume the binary has an equal mass. The low-frequency sensitivity plays a crucial role in the
detection of systems with (1 + z)My, = 300 M.
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Enhancing the low-frequency sensitivity also allows us to detect a signal at an earlier time.
This is because the time to merger ¢,, is given by

M -5/3 -8/3
tm:87s( ") ( A ) , (6)
M@ 25HZ

where ./, is the chirp mass of the binary.

In Fig. 5 we show the cumulative SNR as a function of the time to merger ¢,,. If we can open
up the low-frequency window, it means we would potentially be able to catch a BNS signal
©0(100)s prior to its final merger [6]. This would allow us to detect not only the post-merger
kilonova, but also precursor electromagnatic signals [7, 8, 9, 10, 11].
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FIGURE 5: Cumulative SNR of a BNS event as function of the time to merger. We also show the corresponding
GW frequency in the top x-axis.

Moreover, the sub-100 Hz sensitivity contains valuable information about a BBH’s origin.
If it is formed via a dynamical channel, it may have small residual eccentricity when it
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enters LIGO’s sensitivity band, whereas a BBH formed from an isolated binary should have a
circular orbit [12]. Therefore, detecting the a BBH’s eccentricity could serve as a smoking-gun
evidence of its formation channel.

In Fig. 6, we compare the characteristic strain of an eccentric BBH with the background
instrumental noise [13]. For a circular BBH under the quadrupole formula, the GW emits
only via the n = 2 harmonic (that is, the GW frequency is twice the orbital frequency). When
e >0, the GW can also be emitted via other harmonics (such as the n =1 and n = 3 ones
shown in the plot). On the other hand, GW radiation is efficient in terms of circularizing the
orbit, causing the emission at other harmonics to decay quickly [14]. As a result, detecting
n # 2 harmonics rely critically on the low-frequency sensitivity of the instrument.
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FIGURE 6: Comparison of the characteristic strains of an eccentric BBH merger and the instrumental noise
(shown in 1/ fSy). The binary has M; = My =30 M and an eccentricity of e = 0.5 when f,,, = 1Hz
and e = 0.14 when [, = 5Hz. Here f,, is the orbital frequency. The evolution is terminated at
the inner most stable orbit. In order to detect the eccentricity, one need to detect the harmonics
other than the n =2 one.
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