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1 Introduction

Broadly speaking, the sensitivity of aLIGO is determined by two kinds of noise sources, an
unsubtractable one and a subtractable one. The former originates from quantum or thermal
fluctuations and shows up only in the main GW readout channel. It cannot be distinguished
from the GW signal and thus sets a fundamental limit of the instrument’s sensitivity. On the
other hand, the latter one is due to cross-couplings from the auxiliary control loops and/or
some environmental perturbations like the seismic motion. The perturbations causing excess
noises in DARM are also continuously recorded in (tens of thousands of) auxiliary channels,
and therefore can in principle be used to reconstruct and then clean up the contamination
showing up in the main GW readout.

In Figure 1 we show the noise budget of aLLIGO in its first observing run [1]. As can be seen
from the plot, aLIGO’s sensitivity does not reach its fundamental limit set by the quantum
and thermal noises until 100 Hz. In fact, the total noise (the red "Measured Noise" trace
in Figure 1) in the 10—-20 Hz band the noise is nearly two orders of magnitude above its
fundamental limit determined by the quantum (the grey "Quantum Noise" trace) and thermal
noise (the blue "Thermal Noise" trace).

Our goal, as illustrated in the flow diagram in Figure 2, is to develop machine-learning-based
nonlinear regression techniques to remove the auxiliary channels’ contamination to the GW
channel, and hence improve the aLLIGO sensitivity in the sub— 100 Hz band.

2 Examples of Nonlinear Coupling Mechanisms

How a noise source propagates to the main GW readout is often a complicated (and sometimes
unknown) process. We show in Figure 3 two examples of typical nonlinear noise coupling
that happens in aLIGO.

In the left panel, the angular motion of the mirror and the beam spot motion can couple
to create a length signal that mimics the GW. If the beam spot is displaced Ay from the
rotational pivot and the mirror is rotated by A#, it creates a fluctuation in length, AL,

AL(t) = Ay(H)A0() (D)

where the quantities are defined in Figure 3a. In this case, the contamination is the product
of two auxillary noise sources (LIGO doesn’t directly measure Ay but it can be inferred from
other channels).

Another important noise is due to backscattering, which is illustrated in the right panel.
Because of defects of a mirror’s surface, it can scatter off some light from the main beam (in
Figure 3b this occurs at the end test mass EX, but it can also occur at other optics). The stray
lights may reflect upon some scattering objects (e.g., chamber walls) and recombined to the
main beam. This process creates light fields AE whose phase is shifted with respect to the
main field £y by an amount of

Ax(t)

AE
—(t) x exp |4mi , (2)

Ey
where A is the laser’s wavelength and Ax(¢) is the relative displacement between the mirror
and scattering objects. When Ax(¢) > A, the scattered field AE(¢) becomes nonlinear and can
up-scatter the large, low-frequency seismic motion into the band of GW readout.
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FIGURE 1: Noise budget of aLIGO [1]. In the 10—100 Hz band, the sensitivity is limited by predictable noises
(i.e., noises that are not due to quantum or thermal fluctuations) and thus indicates a large room
of potential improvement. The 'Expected Noise’ trace is the quadrature sum of all budgeted noise
sources and 'Measure noise’ is the actual output of the LIGO detector.
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FIGURE 2: Flow diagram of signal and noise propagation. While the original perturbations of the subtractable
noises are recorded, identifying their couplings to the main GW readout is challenging. In part, this
is due to the large number of channels involved (thousands to tens of thousands). More importantly,
the couplings often have both linear and nonlinear components, and hence cannot be removed
with classical linear regression methods. Instead, our goal is to develop machine-learning-based
nonlinear regression techniques to use time series from the auxiliary channels to construct the
disturbance and then remove it from the main GW readout.
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FIGURE 3: Examples of nonlinear noise coupling in LIGO.

Regression with Neural Networks

Before tackling real data, we simplify the problem by working with mock data sets that
mimic the real interferometer. Each of our mock data sets consists of:

A target channel, which is a time-series modeling simulated noise in the GW readout,
also called darm in the context of interferometers.

Witness channels, which are the time series necessary to predict the target channel.

We increase the complexity of the mock data sets as we have success. Some of the complica-
tions built into are mock data sets include:

Imperfect witnesses. Certain quantities like the beam’s location on a mirror or the
motion of the exact scattering point (as we don’t know its exact location), are often
not directly measured. Instead, they themselves need to be first inferred from other
channels (e.g., the spot location on a mirror may be contained in a combination of
seismometers and angular sensors; the motion of the unknown scattering point can be
interpolated from a sets of accelerometers nearby).

Frequency dependent filtering. The auxillary channels (which are measured in
digital counts) often require linear, frequency-dependent filtering to become physically
relevant quantities like the longitudinal or angular motion of the mirror.

We try to find a neural network that can efficiently predict the target channel from the
witness channels for all of our mock data sets. So far we have found that

1D convolutional neural networks perform well, especially for learning phase shifts
and frequency-dependent filtering.

Dense layers with nonlinear activation functions are useful for learning nonlinear
couplings between channels

Dropout layers are necessary to prevent overfitting.

Some specific examples are shown in Appendix A.
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A Astrophysical Motivations

Astrophysically, removing noise in the sub—100 Hz band will have significant outcomes.
1. Early warning of binary meutron star mergers
2. Higher Mass binary black holes
3. cosmology with high redshift sources
4. BBH astrophysical foreground

For example, the gravitational-wave signal of a black hole binary has a characteristic fre-
quency scale given by

f merger =~

3 ) (100 Mg
1+z Mot
where z is the cosmological redshift and My is the total mass of the system. Therefore, in

order to detect massive binaries at high cosmological redshifts, it is critical to improve the
low-frequency sensitivity that is limited by predictable noises.

) Hz, 3)

More quantitatively, we note that

fh*(FR(f)
SNRZ=4 | =—2—"741 4
Sup et @

where h(f) is the frequency-domain GW waveform and S, (f) is the power spectral density of
the noise. We can hence define
o FIR(HI?

Sa(f) ’

as a density that measures the contribution to the total signal-to-noise ratio (SNR) per logf.

o (5)

We show this quantity in Appendix A for three different detector sensitivities: O2 (blue), the
design sensitivity of aLIGO (orange), and A+ (green). Here we consider a system with total
mass of (1+ z)My,. = 300 M, in the detector frame. In order to emphasize the contribution
from each log f interval, we have normalized each curve by its peak value. As shown in the
figure, the excess (yet subtractable) low-frequency noise reduces the SNR by a large amount.
If our machine learning technique can eventually clean the low-frequency region, it could
enhance the total SNR by 40%, which means amplifying the search volume of such systems
by a factor of ~1.43 =2.7.

We also show the detection horizon as a function of the detector-frame total mass in Fig. 5.
In order to detect systems with (1 + z)My, = 300 M, (which can be intrinsically massive
systems involving intermediate-mass black holes or can be systems at high cosmological
redshift), it is again critical to improve the low-frequency sensitivity.

B Examples of Current Efforts

We implement our networks with Keras [4] in Python.

Here we show results obtained with a network consisting of a convolutional layer with a
linear activation function, followed by alternating pairs of dropout and dense layers with
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FIGURE 4: Density of square SNR as a function of frequency for a system with detector-frame total mass of
(1+2)M, =300M. Each curve has been normalized by its peak value. Compared to the design
sensitivity, we are losing a large amount of SNR due to the excess low-frequency noise.
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FIGURE 5: Detection horizon.
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FIGURE 6: The CNN-Dense neural n

etwork used in these examples.
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eLU activations. The examples here use 4 dropout-dense pairs. The final dense layer only
has one neuron so that the output is a time series just like the target channel. This network
is visualized in Figure 6.

We are also looking into replacing some of the dense layers with equation-learning layers as
detailed in [5]. As we are aware of many of the non-linear coupling functions that occur in
the subtractable noise, this approach will hopefully make the networks easier to train and
less prone to overfitting.

B.1 Bilinear Coupling
To illustrate, what a successfully trained network looks like, we start with a simple example,
where the target channel y is the product of two auxillary channels x; and xo:

Y =X1X2 (6)

We give x1 and x9 white power spectra. We train the network with perfect witnesses, i.e. x1
and xso.

The results are shown in in Figure 7. Note that with just 1000 epochs of training, the
subtractable noise is reduced by almost a factor of 10. From the downward trend of the loss
plot, it is clear that we could do even better by training for longer and optimizing the learning
rate.

B.2 Realistic angle-to-length noise

The network does not currently perform nearly as well for more realistic models. Here we
show results for a realistic model of the angle-to-length noise. The realistic model includes
28 imperfect witness for the 8 true spot motion variables (pit and yaw on 4 interferometer
mirrors) and the 4 true angular motion variables that strongly couple to the DARM. The true
motions couple into the darm as essentially a sum of bilinaer couplings. The true motion and
the witnesses are modeled with realistic power spectra that have a large dynamic range (as
large as 10° for some features) with more power at low frequencies. To deal with the large
dynamic range, we whiten (i.e. filter to reduce the dynamic range) the target and witness
channels before training our network.

The results are shown in in Figure 8. From the ASD, we see that we only see that improve-
ments are limited to less than a factor of 2 between 10 and 20 Hz. From the loss plot, we see
that validation loss has plateaued and training for more epochs will likely not yield further
improvement.

B.3 Obstacles

We suspect that the main reason why our network is performing worse with the realistic
mock data is that the dynamic range of the features is very large. To illustrate this we return
to the simple bilinear example from Appendix B.1. However instead of giving x1 and x9 white
spectra, we give them red 1/f2 power spectra.

The results are shown in Figure 9. No real learning happens and the network overfits the
training data (since the validation loss doesn’t decrease). The only difference between this
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FIGURE 7: Results for simple bilinear coupling mock data (with features that have white PSD’s). Top panel:
Amplitude spectral density (for the validation data) for target (blue trace labeled "Data"), prediction
from the network (yellow trace labeled "Pred"), and difference between the target and prediction
(green trace labeled "Diff"). Bottom panel: Loss plot displaying training loss (blue trace) and
validation loss (yellow trace). Note that one generally expects the validation loss to be above the
training loss. However, when dropout layers are included Keras computes the training loss with
the networks that are missing neurons and it computes the validation loss with the full network,
allowing the validation loss to be lower than the training loss.
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FIGURE 8: Results for realistic angle-to-length mock data. Top panel: Amplitude spectral density (for the
validation data) for target (blue trace labeled "Data"), prediction from the network (yellow trace
labeled "Pred"), and difference between the target and prediction (green trace labeled "Diff").
Bottom panel: Loss plot displaying training loss (blue trace) and validation loss (yellow trace).
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FIGURE 9: Results for simple bilinear coupling mock data with features that have a PSD « 1/f2. Top panel:
Amplitude spectral density (for the validation data) for target (blue trace labeled "Data"), prediction
from the network (yellow trace labeled "Pred"), and difference between the target and prediction
(green trace labeled "Diff"). Bottom panel: Loss plot displaying training loss (blue trace) and
validation loss (yellow trace)
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mock data from the mock data of Appendix B.1 is the power spectra of the input channels, so
it is clear that is a problem.

We are trying to solve this problem with a combination of whitening the witness channels
before input into the network and an intelligent choice of loss function. The high frequency
portions of the input channels which have little power contribute to the target. By whitening
the the witness channels before input into the network we can emphasize the high frequencies
so that the network accounts for them during training. Similarly, by choosing the loss
function intelligently, we can weight the frequencies that are important for gravitational
wave detection, rather than the frequencies that contribute most to standard lost functions
such as mean-squared-error.

page 15 of 16


https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?.submit=Number&docid=T2000181&version=

LIGO-T2000181-v2

References

[1] D. V. Martynov, E. D. Hall, B. P. Abbott, R. Abbott, T. D. Abbott, C. Adams, R. X. Adhikari,
R. A. Anderson, S. B. Anderson, K. Arai, and et al. Sensitivity of the Advanced LIGO
detectors at the beginning of gravitational wave astronomy. PRD, 93(11):112004, June
2016.

[2] Hang Yu. Astrophysical signatures of neutron stars in compact binaries and experimental
improvements on gravitational-wave detectors. PhD thesis, Massachusetts Institute of
Technology, 2019.

[3] Denis V. Martynov. Lock Acquisition and Sensitivity Analysis of Advanced LIGO Interfer-
ometers. PhD thesis, California Institute of Technology, 2015.

[4] Francois Chollet et al. Keras. https://keras.io, 2015.

[56] Samuel Kim, Peter Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir Ceperic, and
Marin Soljacic. Integration of neural network-based symbolic regression in deep learning
for scientific discovery, 2019.

page 16 of 16


https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?.submit=Number&docid=T2000181&version=
https://keras.io

	Introduction
	Examples of Nonlinear Coupling Mechanisms
	Regression with Neural Networks
	Astrophysical Motivations
	Examples of Current Efforts
	Bilinear Coupling
	Realistic angle-to-length noise
	Obstacles


