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ABSTRACT

We investigate the observability of higher harmonics in gravitational wave signals emitted during the
coalescence of binary black holes. We decompose each mode into an overall amplitude, dependent
upon the masses and spins of the system, and an orientation-dependent term, dependent upon the
inclination and polarization of the source. Using this decomposition, we investigate the significance
of higher modes over the parameter space and show that the 33 mode is most significant across
much of the sensitive band of ground-based interferometric detectors, with the 44 having a significant
contribution at high masses. Next, we introduce the signal-to-noise ratio in each higher mode as, e.g.
ρ33, and argue that an observed higher mode SNR > 2.1 is unlikely to occur due to noise alone.

1. INTRODUCTION

Gravitational waves emitted during the coalescence of
black hole and/or neutron star binaries are well known to
emit predominantly at twice the orbital frequency, dur-
ing the inspiral phase of the coalescence. However, it is
also well-known that the gravitational wave signal cannot
be completely characterized by a single harmonic but,
rather, is better decomposed as a sum of spin-weighed
spherical (or spheroidal) harmonics. The dominant har-
monic is the ` = 2, m = ±2 harmonic, but there is also
power in higher harmonics, most notably the 21, 33 and
44 harmonics. The importance of these additional har-
monics increases as the mass ratio between the two black
holes increases and also increases during the late inspi-
ral and merger of the objects. Recent semi-analytical and
numerical relativity models have provided expressions for
an increasing number of the higher harmonics accurate
across the inspiral, merger and ringdown regimes Mehta
et al. (2017); London et al. (2018); Khan et al. (2019);
Khan et al. (2020); Kumar Mehta et al. (2019); Cotesta
et al. (2018); Varma et al. (2019b,a); Rifat et al. (2019);
Nagar et al. (2020); Garca-Quirs et al. (2020); Cotesta
et al. (2020); Ossokine et al. (2020).

The observation of higher gravitational-wave harmon-
ics from a binary merger is interesting for several rea-
sons. Firstly, it provides further evidence that Einstein’s
general relativity is an accurate description of gravity,
including in the strong-field, highly dynamic regime of
the merger of two black holes. Second, by incorporat-
ing knowledge of the higher harmonics into a search for
gravitational waves, the sensitivity of the search could be
increased, leading to an increase in the rate of observed
systems Harry et al. (2018); furthermore these systems
would typically be from interesting parts of the parame-
ter space, for example with high mass ratios. Third, the
observation of the higher harmonics enables more accu-
rate measurement of the properties of system Kalaghatgi
et al. (2019). For example, the measurement of multiple
harmonics can be used to break well-known degeneracies
between the measured distance and orientation of the
system, or the mass ratio and spins of the black holes.

While the gravitational waveform is comprised of con-
tributions from an infinite number of harmonics, it is
really the unambiguous measurement of a second har-

monic (in addition to the 22-harmonic) which will lead to
a step-change in our ability to measure the properties of
the system; additional harmonics will then further refine
the measurement accuracy. Consequently, in this paper,
we perform an in-depth investigation of the importance
of the higher harmonics across the parameter space and
identify those which are likely to make the most signifi-
cant contribution. The amplitude of each harmonic de-
pends both upon the intrinsic parameters of the system
(its masses and spins, both magnitudes and orientations)
as well as the extrinsic parameters (the orientation of the
binary and the detector network’s sensitivity to the two
polarizations of gravitational waves). For simplicity, we
decompose the harmonics into an overall amplitude fac-
tor, dependent only upon the extrinsic parameters, and
an orientation dependent term. We then investigate the
significance of each harmonic across the parameter space.

Next, we turn to the question of when additional har-
monics have been unambiguously observed. From a
model selection perspective, this can be addressed by
considering the evidence in favour of a waveform con-
taining higher harmonics against one without. Here, we
introduce the higher-harmonic signal to noise ratio, and
argue that this can be used as an alternative method
of establishing the observability of higher harmonics. A
similar prescription has recently been introduced for pre-
cessing systems Fairhurst et al. (2019a,b). It is straight-
forward to obtain the SNR contained in each of the
waveform harmonics (with the higher harmonics appro-
priately orthogonalized so as not to pick up any power
from the dominant harmonic). In principle, the wave-
form parameters can all be measured from the dominant
harmonic. However, due to limited SNR and well-known
degeneracies between parameters Usman et al. (2019),
it is often the case that the observation of only the 22-
harmonic provides little information about the expected
higher mode signal. Consequently, we argue that, in
many cases, the amplitude and phase of the second most
significant mode are essentially unconstrained. This al-
lows us to infer the expected distribution in the presence
of noise alone and to propose a straightforward thresh-
old on power in the second most significant harmonic as
a simple criterion for the observation of higher harmonics
in a gravitational wave signal.
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2. WAVEFORM

The measured gravitational wave strain h can be writ-
ten as

h = F+(αs, δs, χ)h+ + F×(αs, δs, χ)h×. (1)

Where αs, δs denote the right-ascension and declina-
tion of the source. The antenna factors F+(αs, δs, χ)
and F×(αs, δs, χ) relate the polarizations h+ and h× in
the radiation-frame to the detector-frame. We define
F+(αs, δs, χ) and F×(αs, δs, χ) in the dominant polar-
ization frame Klimenko et al. (2005); Harry & Fairhurst
(2011), which for each sky point the polarization angle
χ is chosen to maximize the network sensitivity to F+.
This gives us a sense to what extent a network is sen-
sitive to two independent polarizations for a given sky
point. We have this freedom of choice for χ by leaving
free a further polarization angle ψ. A counter-clockwise
rotation by ψ transforms h′+ and h′× as

h+ =h′+ cos 2ψ + h′× sin 2ψ (2)

h× =− h′+ sin 2ψ + h′× cos 2ψ .

Since the observed strain depends only upon the sum of
the two angles ψ and χ, we are free to fix one of them to
a convenient value; we utilise this freedom to work in the
dominant polarization basis. The radiation-frame grav-
itational polarizations h′+ and h′× can be decomposed
into modes using spin-weighted spherical harmonics of
spin weight -2, −2Ylm, which depend on the inclination
angle ι and coalescence phase φc, as 1

h′+ − ih′× =
∑
l≥2

l∑
m=−l

−2Ylm(ι, φc)hlm (3)

For a binary merger which does not exhibit precession,
the waveform can be expressed in the frequency domain,
using the stationary-phase approximation, as

h+ =
1

2

∑
l≥2

l∑
m=1

Alm+ h̃lm(f) (4)

h× =
i

2

∑
l≥2

l∑
m=1

Alm× h̃lm(f)

where

Alm+ =
[
−2Ylm(ι, φc) + (−1)l−2Y

∗
l−m(ι, φc)

]
(5)

Alm× =
[
−2Ylm(ι, φc)− (−1)l−2Y

∗
l−m(ι, φc)

]
See Appendix A for a more detailed discussion of the
decomposition.

Using these expressions it is straightforward to derive
the dependence of each multipole upon the binary incli-
nation ι. The dependence for the most significant har-

1 See Appendix A for a more detailed discussion of the decom-
position.

monics is

A22
+ = 1

2 (1 + cos2 ι) (6)

A22
× = cos ι

A21
+ = sin ι

A21
× = sin ι cos ι

A33
+ = sin ι(1 + cos2 ι)

A33
× = 2 sin ι cos ι

A32
+ = 1− 2 cos2 ι

A32
× = 1

2 (cos ι− 3 cos3 ι)

A44
+ = sin2 ι(1 + cos2 ι)

A44
× = 2 sin2 ι cos ι

and each mode will have an eimφc dependence on the
phase angle. For the 22 mode, it is customary to choose
a normalization such that A22

+ = A22
× = 1 for a face-

on system, and we use that normalization here. Since
many of the higher harmonics vanish for face-on systems,
we instead choose a normalization for the higher-mode
amplitudes, Alm+,× in Eq. (6), by requiring that the plus

polarization Alm+ is unity for ι = π
2 , i.e. when the system

is edge on. Figure 1 shows the dependence of the modes
on inclination. The plus polarization of the 22 mode
peaks at face-on, while the 21 and 44 modes peak at
edge-on. The 32 mode is maximum at both face-on and
edge-on orientations while the 33 mode hand peaks at

sin ι =
√

2
3 .

During inspiral the frequency evolution of a multi-
pole ωlm, is related to the orbital frequency ωorb as
ωlm ∼ mωorb. While during the ringdown the frequency
approximately evolves as ωlm ∼ lωorb. Thus it is possible
to scale the frequencies of the 22 mode in quite a simple
manner to obtain an approximate phase evolution of the
l = m harmonics, for example the phase evolution of the
33 mode is a factor of 1.5 times ω22.

3. OBSERVABILITY

The gravitational wave signal from every binary merger
will be comprised of the sum of an infinite number of
harmonics. However, for the majority of signals observed
close to threshold, only the dominant 22 harmonic will be
observable above the noise background. In this section,
we investigate the observability of the different modes,
and how this varies across the mass and spin parameter
space. For concreteness, we restrict attention to a single
detector with a sensitivity comparable to that achieved
by the LIGO observatories during their third observing
run. The power spectral density for the analysis is given
in Appendix B Abbott et al. (2016).

The key metric for waveform observability is the opti-
mal signal-to-noise ratio (SNR) defined as

ρ =
√

(h|h) , (7)

where we have introduced the inner product weighted by
noise characterized by a power spectrum S(f)

(a|b) := 4 Re

∫ fmax

0

ã(f)b̃(f)?

S(f)
df . (8)
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Figure 1. Dependence on the inclination angle of each mode.

Consider the situation where the 22 mode has been
observed, and we are interested in obtaining an esti-
mate of the expected SNR in the other harmonics. As
is clear from Eq. (4), the SNR in the higher harmonics
will depend upon the detector sensitivity to the higher
harmonic waveform, h̃`m, as well as the amplitude factor
A`m+,×. The sensitivity of the detector to a given harmonic
is encoded by

σ`m =

√
(h̃`m|h̃`m) . (9)

The amplitude of each multipole depends on both the
intrinsic properties of the system and the orientation rel-
ative to the network of detectors. We are interested in
quantifying the contribution of higher multipoles to a sig-
nal relative to the dominant. For simplicity we first con-
sider just two multipoles: `m = (2, 2) and `m = (3, 3).
From (1), (4) and (7), the waveform in detector i is given
by

hi = h22i + h33i = F i+(h22+ + h33+ ) + F i×(h22× + h33× ) (10)

In the dominant polarization frame F× · F+ = 0 so we
can write the network optimal SNR as

ρ2 =F 2
+

[
|h22+ |2 + |h33+ |2 + 2(h33+ |h22+ )

]
+F 2
×
[
|h22× |2 + |h33× |2 + 2(h33× |h22× )

]
(11)

The cross terms such as (h33+ |h22+ ) can be both positive
or negative, causing constructive or destructive interfer-
ence between the harmonics. As discussed previously, the
frequency during inspiral scales with ` while the ring-
down frequency scales approximately with m. Conse-
quently, there is typically little overlap between the 22
mode and modes for which both ` 6= 2 and m 6= 2.
Since the loudest subdominant multipoles are usually
`m = (3, 3) and `m = (4, 4) we neglect these cross terms
for now, but will revisit their significance later. Doing
this allows us to write

ρ2 =F 2
+|h22+ |2

[
1 +
|h33+ |2

|h22+ |2

]
+F 2
×|h22× |2

[
1 +
|h33× |2

|h22× |2

]
. (12)

The cross and plus polarizations for multipoles with ` =
m are obtained by multiplying the 22 polarizations by the

same overall factors, sin(`−2) ι. Therefore
|h33

+ |
2

|h22
+ |2

=
|h33

× |
2

|h22
× |2

.

To make this explicit we factor out the dependence of
inclination and compute the ratio at fiducial inclinations
such that A+

lm = 1 (i.e. 0 for the 22 multipole and π/2
for higher multipoles). Thus we define the ratio at these
fiducial inclinations as

α`m =
σ`m
σ22

, (13)

We can thus write the SNR, ignoring the cross terms,
as

ρ2 = ρ222 + ρ2`m , (14)

where
ρ`m = ρ22α`mR`m (15)

and

R33(ι) = 2 sin ι

R44(ι) = 2 sin2 ι . (16)

The factor of two in (16) arises because the 22 mode
amplitude A22

+,× is half of the other modes at ι = π
2 .

For other modes, the relative SNRs can be expressed in
a similar manner but now the geometric factor R will
depend also upon the polarization angle ψ.

3.1. Extrinsic parameters

As discussed previously, we are interested in under-
standing the expected power in higher harmonics, given
the observation of the 22 mode. From the form of
Eq. (16), we note two things immediately: it is possi-
ble that there is zero amplitude for both the 33 and 44
harmonics, and this occurs when the system is face on
(ι = 0); the maximum value of the geometric factor is
two, and this occurs when the system is edge on (ι = π

2 ).
Next, we consider the distribution of R for a population
of sources distributed uniformly in volume2 and with uni-
formly distributed orientation. In figure 2 we plot the

2 Realistically, we do not expect sources to be uniformly dis-
tributed, due to both cosmological effects and a redshift dependent
rate Madau & Dickinson (2014). Nonetheless, this simple model
provides a reasonably approximation to gain an understanding of
the likely values of R.
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Figure 2. Distribution of R33(ι) and R44(ι) for all binaries (Universe) as well as that subset that would be detected above a fixed SNR
threshold for the 22 harmonic (Detected). We show both the results from a Monte-Carlo simulation as well as the analytical prediction.

expected distribution of the geometrical factors R33(ι)
and R44(ι). We show both the distribution based upon
uniformly distributed sources, as well as the expected
observed distribution – obtained by placing a threshold
upon the observed SNR in the dominant 22 harmonic
Schutz (2011). In both cases, for both the 33 and 44
harmonic, the distribution peaks at R = 2, the value for
an edge-on system. However, selection effects serve to
significantly reduce the peak, as this is the orientation
that gives the least power in the 22 harmonic.

For other modes, the expected distribution of R`m will
depend upon the sensitivity of the detector network to
the two polarizations of the gravitational wave — the
distribution for R`m will differ between a single detector,
sensitive to only one polarization, and a network with
good sensitivity to both polarizations. Nonetheless, the
distribution for R21 will share features with R33 and R44,
namely it will take values between 0 (face on) and 2 (edge
on), with a peak at R21 = 2 which is reduced by selection
effects in the observed population. R32 . 1 for sources
near to face-on, and so there is a significant contribution
there as well as at the maximum of R32 = 2 which occurs
for edge-on systems.

3.2. Relative strength of higher modes

The two important intrinsic parameters determining
the relative power in the higher modes are mass ratio
and total mass, with spin effects entering at higher post-
Newtonian (PN) order for most modes (Mishra et al.
2016). The contribution of a higher mode relative to the
dominant 22 mode increases with an increasing mass ra-
tio. The relative amplitudes of the modes is independent
of the total mass of the system. However the frequency
content of each mode is does depend upon the total mass
and thus depending on the shape of the detector PSD
certain higher modes might be preferentially observed.

In Fig 3 we show the relative amplitude αlm in the
33 and 44 multipoles, calculated using the waveform ap-
proximant PhenomHM London et al. (2018), for a signal
observed in a detector with LIGO O3 sensitivity, as a
function of the total mass and mass ratio of the system.
Generally, the 33 mode will be the loudest subdominant

mode. For symmetric mass binaries, and particularly
those with large masses, the 44 mode will be the loudest.

Now, for the power in these modes to be observable,
it must be possible to distinguish the mode from the 22
harmonic. Generally, it is only the contribution which
is orthogonal to the 22 harmonic which will be observ-
able. Any contribution from the higher harmonics which
is proportional to the 22 harmonic will simply serve to
change the power observed in the 22. Consequently, we
are interested in knowing whether the waveforms are or-
thogonal or, equivalently, what the overlap between the
modes is. Here, we define the normalized overlap maxi-
mized over φc

O(`m, 22) =
Maxφc(h̃`m|h̃22)

|h̃`m||h̃22|
. (17)

The overlap between the 33 and 44 modes with the 22
harmonic is < 10% across the parameter space, as ex-
pected due to the fact that the frequency evolution of
these harmonics differs significantly from the 22. Plots
of overlaps of all multipoles can be seen in the supple-
mentary material Mills & Fairhurst (2020).

Next, we turn our attention to the 32 and 21 harmon-
ics. In figure 4 we show the amplitude of the 21 harmonic.
The 21 mode is the only subdominant mode considered
in this paper which has spin terms in the amplitude at
1 PN order Mishra et al. (2016). For this reason, the
21 mode can become more significant for binaries with
large asymmetric spins, and consequently we show the
relative mode amplitude for two different spins. Two
facts determine the behaviour of α21 with increasing to-
tal mass. First α21 is largest at merger. Second the 21
merger is at a lower frequency than the 22. Initially α21

will increase with total mass as more of the merger is in
the bucket. As the mass continues to increase, the 21
mode amplitude is no longer observable as it merges at
too low a frequency, and so α21 decreases. Furthermore,
the 21 multipole has the same frequency as the 22 mode
during ringdown, and has a large overlap for ringdown-
dominated signals, as shown in Fig 5.

In Figure 6, we show the significance of the 32 multi-
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Figure 3. Ratio of the intrinsic amplitudes in Advanced LIGO (O3) of the `,m = (3, 3) and `,m = (4, 4) multipoles to the `,m = (2, 2)
multipole as a function of mass ratio and total mass (M�). The figures show α`m as defined in Eq. (13). For reference, we also mark the
mass and mass ratio of GW170729, which was the first signal with some observable evidence for higher harmonics.

Figure 4. Ratio of the signal-to-noise ratio in Advanced LIGO (O3) of the `,m = (2, 1) to the `,m = (2, 2) multipole as a function of mass
ratio and total mass (M�) for an overhead system viewed edge-on with spins parallel to the orbital angular momentum: Left: χeff = 0.0,
Right: χeff = −0.8. Plotted for a maximum value of α21 0.8, to allow for easy comparison with other multipoles and detectors.

pole and its overlap with the 22 mode. Comparison with
figure 3 shows that the 32 mode is generally less signifi-
cant than either the 33 or 44 modes. In addition, there is
significant overlap between the 22 and 32 modes, partic-
ularly for low masses. This is to be expected, as the 32
multipole oscillates at the same frequency as the 22 dur-
ing the inspiral. Interestingly, one of the most significant
impact of the 32 mode can be to produce an incorrect
estimate of the amplitude of the 22 mode, and conse-
quently introduce an error in the measured distance, as
power from the 32 mode will be mistakenly attributed to
the 22 mode.

Contribution of the other modes scales monotonically
with increasing mass since the merger frequencies are
higher than the 22. ET’s sensitivity extends to lower
frequency than aLIGO and it is thus sensitive to heav-
ier binaries. The highest mass events might have a 22
merger-ringdown waveform that is cut off by the steeply
rising noise floor of the detector at low frequencies. In
addition to scaling the frequencies, mass also increases
the amplitude of the gravitational wave. Therefore even
in the absence of a detectable 22 waveform, subdominant

modes which merge at higher frequencies might be ob-
servable. For this reason, studies quantifying the observ-
ability of such systems ought to include these modes.

4. MEASUREMENT

A simple way to quantify evidence for higher multi-
poles within a signal is to look at the results from pa-
rameter estimation. Do the inferred system properties
correspond to waveforms with relatively large contribu-
tions from higher-order multipoles? For concreteness we
will discuss results for the 33 multipole, which for most
events will be the largest subdominant multipole. We
calculate the component of the 33 optimal SNR that is
orthogonal to the 22 multipole ρ⊥33 and so necessarily
represents new evidence in the data.

ρ⊥33 = ρ33
√

1−O(33, 22)2 (18)

In Fig. 7 we show the inferred posterior probability dis-
tribution for ρ⊥33 for a binary with masses m1 = 40M�,
m2 = 10M� inclined at cos ι = 0.7 and with ρ22 = 20
under a variety of assumptions for signal and model.
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Figure 5. Absolute value of the noise-weighted inner product
between the `,m = (2, 2) the `,m = (2, 1) multipole in Advanced
LIGO (O3) as a function of mass ratio and total mass (M�) for an
overhead system viewed edge-on with spins parallel to the orbital
angular momentum, χeff = 0.0. Plotted for a maximum value of
O2221 0.8, to allow for easy comparison with other multipoles and
detectors.

Parameter estimates were obtained with LALInference
Veitch et al. (2015). The green curve shows the distri-
bution when a the 33 mode is present in both the signal
and the waveform model. This peaks at ρ33⊥ ∼ 5 con-
sistent with the injected SNR in the 33 mode. If instead
the signal contained only the 22 multipole, the inferred
distribution is very different. The blue, red, purple and
brown curves are different noise realizations of this sce-
nario. We see that most of the noise realizations corre-
spond very closely to a χ-distribution with two degrees
of freedom (the pink dashed line). The inferred distribu-
tion for first noise realization (red histogram) is peaked
at a larger ρ33⊥, indicating an excess of gaussian noise
in the 33 multipole filter.

In order to interpret these distributions, we calcu-
late the expected distribution under some simplifying as-
sumptions. Specifically, we consider the scenario where
the 22 measurement has already fixed the parameters
which determine the phase evolution of the binary (pri-
marily the chirp mass, but also a combination of aligned
spin and mass ratio). Typically however, the binary ori-
entation and phase is not well measured. We show this
in Fig. 8 which is the inferred probability distribution

of inclination, distance, polarization and phase at coa-
lescence posterior probability distributions for the above
binary estimated with a waveform model containing only
the dominant 22 multipole. The system is recovered as
consistent with face-on and so, due to degeneracies Us-
man et al. (2019), the only well measured quantities are
A22 = cos ι

DL
and φ22 = ψ ± φc. This means we still ef-

fectively have two degrees of freedom in the amplitude
parameters. We are thus free to tune the amplitude and
phase of the 33 multipole in order to best match the
data. Another way to see this is to look at the poste-
rior probabilty distribution for the 33 amplitude inferred
when using a 22-only waveform model (see orange curve
in Fig. 7). The distribution is broad and has support
across a large range of ρ33. The measurement thus has
this as a prior and can produce more peaked posteriors
within this range. Also shown in this plot is a distribu-
tion inferred for the 33 when no signal was injected. We
can understand the shape of these distributions with a
simplified model where the amplitude and phase of the
33 are free and the prior probability is uniform, which
we have argued is a good approximation for the above
system. Therefore we have a template

h = ah330 + bh33π
2

+ h22 (19)

Where h330 and h33π
2

are the two phases of the waveform

of the 33 waveform, a and b control the overall ampli-
tude of these parameters, and h22 denotes all dominant
mode contributions to the waveform. We assume the
only free parameters are a and b, which determine the
33 amplitude and phase. In what follows we neglect con-
stant terms such as h22 as we are interested in the form
of the posterior probability distribution for a and b given
a signal s, and uniform prior π(a.b)

p(a, b|s) ∝ Λ(a, b)π(a, b) . (20)

The likelihood of a signal s given the amplitudes a, b and
gaussian noise is

Λ(s|a, b) ∝ exp

[
−1

2
(s− h(a, b)|s− h(a, b))

]
. (21)

Using polar variables ρ33 =
√
a2 + b2 and φ33 =

arctan(b/a), and assuming a uniform prior we can write
the posterior probability distribution for the amplitudes
a and b given a signal s as

p(a, b|s)dadb ∝ Λ(a, b)dadb (22)

= exp

[
a(s|h330 ) + b(s|h33π

2
)− a2 + b2

2
− (s|s)

2

]
dadb (23)

= ρ33 exp

[
−ρ

2
33 + (s|s)

2
+ ρ33 cosφ33(s|h330 ) + ρ33 sinφ33(s|h33π

2
)

]
dρ33dφ33 (24)

Defining the matched filter signal-to-noise ratio ρMF
33 =

√
(s|h330 )2 + (s|h33π

2
)2 and phase φMF

33 = arctan
(s|h33

π
2
)

(s|h33
0 )

and marginalizing over φ33, we obtain
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Figure 6. Left: Ratio of the signal-to-noise ratio in Advanced LIGO (O3) of the `,m = (3, 2) to the `,m = (2, 2) multipole as a function
of mass ratio and total mass (M�) for an overhead system viewed edge-on with spins parallel to the orbital angular momentum, χeff = 0.0.
Plotted for a maximum value of α32 0.8, to allow for easy comparison with other multipoles and detectors. Right: Absolute value of the
noise-weighted inner product between the `,m = (2, 2) the `,m = (2, 2) multipole in Advanced LIGO (O3) as a function of mass ratio and
total mass (M�) for an overhead system viewed edge-on with spins parallel to the orbital angular momentum, χeff = 0.0. Plotted for a
maximum value of O2232 0.8, to allow for easy comparison with other multipoles and detectors.

Figure 7. Posterior probability distribution for the orthogonal optimal signal-to-noise ratio of the 33 multipole. The injected parameters
are m1 = 40, m2 = 10 at cos ι = 0.7.

Figure 8. 2D Posterior probability distribution for left: inclination and distance, right: polarization and phase at coalescence. The injected
parameters are m1 = 40, m2 = 10 at cos ι = 0.7. Templates used for parameter estimation contain only the dominant 22 multipole. The
solid (dashed) lines denote 90% (50%) credible region.
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p(ρ33|s) ∝ ρ33 exp

[
−ρ

2
33 + (s|s)

2

] ∫ 2π

0

exp
[
ρ33ρ

MF
33 cos(φ33 − φMF )

]
dφ33 (25)

∝ ρ33 exp

[
−ρ

2
33 + (ρMF

33 )2

2

]
I0(ρ33ρ

MF
33 ) (26)

Where I0 is the modified Bessel function of the first kind,
and we have used the fact that (s|s) = (ρMF

33 )2+ const.
3 We recognize Eq 26 as the non-central chi distribution
with 2 degrees of freedom and non-centrality parameter
equal to ρMF

33 . In the absence of a gravitational-wave
signal s = n where n is guassian noise. In this case,
the probability distributions for the filters (s|h330 ) and
(s|h33π

2
) are zero-mean, unit-variance gaussians and ρMF

33

is chi-distributed with 2 degrees of freedom.
Finally we can interpret the distributions for ρ⊥33 un-

der the no 33 signal hypothesis (the blue, red, purple and
brown histograms in Fig. 7). The zero noise realization
has ρMF

33 by definition, so reduces to the chi-distribution.
While the noise realizations 2 and 3 are consistent with
a small amount of noise in the ρMF

33 and so closely resem-
ble the zero noise case. While the first noise realization
has an excess of noise corresponding to ρMF

33 ∼ 2.1. We
expect gaussian noise to produce ρMF

33 > 2.1 in 10% of
realizations.

5. DISCUSSION

In this paper, we have explored the relative signifi-
cance of the higher gravitational wave harmonics in bi-
nary merger signals. For simplicity, we have decom-
posed the harmonics into an overall amplitude, depen-
dent only upon the masses and spins of the system, and
an orientation-dependent term, which is dependent upon
the inclination and polarization but not the masses or
spins. This allows us to easily identify the most signif-
icant modes, and the regions of parameter space where
they are most likely to be observable. As is well known,
the higher harmonics are most important when the bi-
nary is close to edge on and, indeed, we show that this
maximal amplitude is corresponds to the most likely ori-
entation, even taking into account selection effects. In
addition, we show that for much of the binary parame-
ter space, the 33 mode will be the most significant sub-
dominant harmonic, with an amplitude about one quar-
ter of the 22 mode for a mass-ratio 2 binary (over a broad
range of masses). The 44 mode becomes more signifi-
cant at higher masses and, although the relative ampli-
tude is less than 0.2 for much of the parameter space,
it is still the most significant sub-dominant harmonic for
high-mass systems where the two components have com-
parable masses

For signals which are close to threshold, it is likely
that only one additional mode will be clearly observ-
able. Thus, for simplicity, we have introduced and ob-
servability criterion for the second harmonic. In many

3 Since s is composed of components parallel, and perpindicular
to the two filters h33

0 and h33
π
2

, we can always say (s|s) = (s|h33
0 ) +

(s|h33
π
2

)+ other constant terms since we only filter once.

cases, the amplitude and phase of the second harmonic is
largely unconstrained by the observation of the 22 mode
— there are often large degeneracies in the measurement
of the distance and inclination of the binary Usman et al.
(2019), which lead to a broad uncertainty in the expected
amplitude of the higher mode, and in the polarization
and phase, which leads to a lack of knowledge of the
phase of the higher modes. Consequently, the power in
the second most significant mode will be χ2 distributed
with two degrees of freedom (corresponding to the un-
known amplitude and phase of the mode). If there is
no power in the mode, then the observed power is ex-
pected to be (centrally) χ2 distributed while if there is
power in the mode the distribution will be non-central
χ2, where the non-centrality is given by the SNR in the
higher mode. We have performed a series of simulations
that demonstrate this expectation is valid. Using this
simple observation allows us to introduce a simple test
for power in a higher mode: if the observed SNR in the
mode is above 2.1, then this is unlikely to occur due to
noise alone so there is evidence of a higher mode signal.

We note that this simple criterion can also be used to
identify which signals, observed in a search which uses
only the dominant harmonic, are likely to contain sig-
nificant power in the higher harmonic. Based upon the
recovered parameters, we can straightforwardly calculate
the expected power in the higher modes and test whether
we expect an SNR greater than 2.1 in any mode. If
so, then performing parameter estimation with a higher-
mode waveform will likely lead to either the observation
of the higher mode, and consequent reduction in mea-
surement uncertainty of the binary parameters, or the
restriction of these parameters to regions of the parame-
ter space where the higher harmonic amplitudes are low.

While the method introduced here is straightforward,
there are several clear limitations. Most obviously, the
discussion here has limited attention to a single observ-
able harmonic. In many cases, this will be a reasonable
approximation as there will be one harmonic which is is
significantly larger than the others (as can be seen from
the figures). Furthermore, it is likely that the obser-
vation of a single higher harmonic will be sufficient to
significantly improve the ability to recover the parame-
ters of the system, most importantly the binary orien-
tation. The observation of additional modes will likely
provide additional improvements, but possibly not the
step-change of observing the second harmonic. For a de-
tailed understanding of the impact of all of the higher
harmonics, a full, Bayesian parameter estimation explo-
ration of the issue will be necessary Kalaghatgi et al.
(2019). Finally, throughout, we have restricted attention
to non-precessing systems. In a recent paper, a similar
analysis to the one presented here was performed on pre-
cessing systems, again with a focus on the observability of
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the two dominant harmonics Fairhurst et al. (2019b,a).
For systems where both higher harmonics and preces-
sion have an observable impact on the waveform, it will
be necessary to combine these ideas, to see whether it

is possible to identify both the leading order precession
and higher harmonic contributions to the waveform.

APPENDIX

SPIN-WEIGHTED SPHERICAL HARMONIC POLARIZATIONS

The general form for the spin-weighted spherical harmonics is

sYlm(ι, φc) = (−1)
m

√
(l +m)!(l −m)!(2l + 1)

4π(l + s)!(l − s)!
sin2l

( ι
2

)
×

l−s∑
r=0

(
l − s
r

)(
l + s

r + s−m

)
(−1)

l−r−s
eimφc cot2r+s−m

( ι
2

)
,

(A1)
which can be written in terms of the wigner d-functions dlm−s(ι) (implicitly defined here)

sYlm(ι, φc) =

√
(2l + 1)

4π
dlm−s(ι)e

imφc . (A2)

They have the following symmetries

sȲlm = (−1)
s+m

−sYl(−m) (A3)

sYlm(π − ι, φc + π) = (−1)
l
−sYlm(ι, φc). (A4)

The spin-weighted spherical harmonics for the modes we are interested in are

−2Y22 =
1

2

√
5

π
e2iφc cos4

( ι
2

)
(A5)

−2Y2−2 =
1

2

√
5

π
e−2iφc sin4

( ι
2

)
(A6)

−2Y21 =
1

2

√
5

π
eiφc cos2

( ι
2

)
sin(ι) (A7)

−2Y2−1 =
1

2

√
5

π
e−iφc sin2

( ι
2

)
sin(ι) (A8)

−2Y33 =
1

2

√
21

2π

(
−ei3φc)

)
cos4

( ι
2

)
sin(ι) (A9)

−2Y3−3 =
1

2

√
21

2π
e−i3φc sin4

( ι
2

)
sin(ι) (A10)

−2Y44 =
3

4

√
7

π
e4iφc cos4

( ι
2

)
sin2(ι) (A11)

−2Y4−4 =
3

4

√
7

π
e−4iφc sin4

( ι
2

)
sin2(ι) (A12)

Three properties of hlm help to simplify Eq (3). Firstly, specializing to planar (i.e. non-precessing) binaries allows

us to write hl−m = (−1)lh∗lmBlanchet (2014). Secondly, in the frequency domain, h̃∗lm(f) = h̃lm(−f)∗. To see this, let
x(t) ≡ hlm(t) be some complex function with r eal and imaginary parts xr and xI : x(t) = xR(t) + ixI(t). Then

x̃(f) = FT [x(t)] =

∫
dtx(t)e−ift (A13)

=

∫
dt [xR + ixI ] [cos ft− i sin ft] (A14)

=

∫
dt [xR cos ft+ xI sin ft+ i(xI cos ft− xR sin ft)] (A15)

x̃(−f) =

∫
dt [xR cos ft− xI sin ft+ i(xI cos ft+ xR sin ft)] (A16)

x̃(−f)∗ =

∫
dt [xR cos ft− xI sin ft− i(xI cos ft+ xR sin ft)] (A17)



10

and

x̃∗(f) = FT [x∗(t)] =

∫
dt [xR − ixI ] [cos ft− i sin ft] (A18)

=

∫
dt [xR cos ft− xI sin ft− i(xI cos ft+ xR sin ft)] (A19)

= x̃(−f)∗ (A20)

Finally we make the further approximation Marsat & Baker (2018) that if we only care about the waveform in
direction n̂ we can neglect one side of the frequency spectrum, depending on the sign of m. This approximation is
valid in particular where the stationary phase approximation has been used Marsat & Baker (2018). We therefore
assume

h̃lm(f) ' 0

{
f > 0,m < 0

f < 0,m > 0.
(A21)

With these three properties we can obtain explicit expressions for the orientation dependence of each of the modes

h+ =
1

2

∑
l≥2

l∑
m=−l

[−2Ylm(ι, φc)hlm + −2Y
∗
lm(ι, φc)h

∗
lm] (A22)

h̃+(f) =
1

2

∑
l≥2

l∑
m=−l

[
−2Ylm(ι, φc)h̃lm(f) + −2Y

∗
lm(ι, φc)h̃lm(−f)∗

]
(A23)

=
1

2

∑
l≥2

l∑
m=1

[
−2Ylm(ι, φc)h̃lm(f) + −2Y

∗
l−m(ι, φc)h̃l−m(f)∗

]
(A24)

=
1

2

∑
l≥2

l∑
m=1

[
−2Ylm(ι, φc)h̃lm(f) + −2Y

∗
l−m(ι, φc)(−1)lh̃lm(f)

]
(A25)

=
1

2

∑
l≥2

l∑
m=1

[
−2Ylm(ι, φc) + (−1)l−2Y

∗
l−m(ι, φc)

]
h̃lm(f) (A26)

and similarly we can show

h× =
i

2

∑
l≥2

l∑
m=−l

[−2Ylm(ι, φc)hlm − −2Y ∗lm(ι, φc)h
∗
lm] (A27)

h̃×(f) =
i

2

∑
l≥2

l∑
m=−l

[
−2Ylm(ι, φc)h̃lm(f) + −2Y

∗
lm(ι, φc)h̃lm(−f)∗

]
(A28)

=
i

2

∑
l≥2

l∑
m=1

[
−2Ylm(ι, φc)− (−1)l−2Y

∗
l−m(ι, φc)

]
h̃lm(f) (A29)

PSDS USED

In figure 9 we show the power spectral density of the detector noise for the O3 noise curve used in the studies in
the body of the paper. For reference, we also show the PSD for aLIGO at design sensitivity and also for one proposed
configuration of the Einstein Telescope (ET-D), a proposed next-generation gravitational wave observatory.
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