LIGO-G2000218.

Stacked-Triplet Ternary HR Coatings Another Multimaterial Design Option

Innocenzo M. Pinto

Virgo-LSC OWG Telecon, March 3rd 2020

Multi-Material HR Coatings

• Multimaterial coatings for GW detectors were introduced in:

Steinlechner et al., PRD 91 (2015) 042001 Yam et al., PRD 91 (2015) 042002

in the perspective of using an optically dense(r) but lossy material featuring low(er) mechanical losses compared to mainstream materials (Silica and Ti::Tantala) in the "deep" layers of the coating, where the field is suitably weak.

(b) Air

• The concept has been subsequently elaborated following several directions [Craig et al., PRL 122 (2019) 231102].

• The idea of using more than two materials is gaining momentum, in view of the development of new improved coating materials, including *a*Si [Birney et al.

SiO₂ Ta₂O₅ *a*Si *a*Si

PRL 121 (2018) 191101], SiOx [Gras et al., LIGO-G1901619], Silicon Nitrides [Chao et al., LIGO-G192341], GeO₂ [Vajente et al., OWG].

• In this communication we explore an alternative multimaterial coating design option based on *stacked (Bragg) triplets* (or more generally m-tuplets).

Larruquert Rule

For building HR stacked multiplet coatings using lossy materials :

"The materials (in each m-tuplet) should be chosen so as to move *clockwise* in the complex refraction-index plane when going from the top to the bottom layer"

[J. Larruquert, JOSA A18 (2001) 2617, J. Larruquert, JOSA A21 (2004) 1750]

Consider, e.g., stacked-triplet coatings, using Silica, Tantala and a-Silicon.

- Let the optical thicknesses s[aSi], and $s[Ta_2O_5]$ and the number N_T of triplets the design parameters;
- Assume all triplets as HWL. Hence
 s[SiO₂] = 0.5 (s[aSi]+s[Ta₂O₅]).

Larruquert Rule Illustrated . 15-Triplets Coating Transmittance

(arrow in plots points toward lower transmittance values)

"Countervlockwise sequences"

Tantala->Silicon->Silica

s[aSi]

Iso-Transmittance Contours 0.25F 0.20 0.15 °5[Ta²O²] 0.10 °2[0.05 0 00 0.00 0.05 0.10 0.15 0.20 0.25 s[aSi]

Silica->Tantala->Silicon

Stacked-Triplet HR Coating Design Test-Run

Design goals (ET-LF like): $\tau_P = 5 ppm$, $\pi_{max} = 5 ppm$

Reference design: HWL-doublets Tantala()/Silica() QWL-layers (with HWL-thick SiO₂ cap added on top)

	n	k	Y [GPa]	φ@10K
aSi	3.48	$(1.2 \pm 0.2) \cdot 10^{-5}$ @1550nm $(1.7 \pm 0.1) \cdot 10^{-4}$ @1064nm	147	$1.7\cdot 10^{-5}$
Ti::Ta ₂ O ₅	2.05	$0.008 \cdot 10^{-5}$	140	7.8 · 10 ⁻⁴
SiO,	1.44	0	72	$8.5 \cdot 10^{-4}$

Stacked-triplets design: HWL-triplets Tantala(□)/Silica(□)/Silicon(■) (or cyclic permutations thereof) non-QWL layers (with HWL-thick SiO₂ cap added on top)

Sequence: Tantala, Silica, Silicon; $N_T = 15$

Stacked-Triplet Design Algorithm (prescribed τ_P and π_{max})

For all admissible (*clockwise in complex index plane*) Larruquert material sequences, While $N_T < N_{ref}$,

End while;

Select the N_T for which R_{ϕ} is minimum;

End for;

Select the sequence for which R_{ϕ} is minimum.

see previous slide

Optimum Stacked Triplet Design with $au_P=5ppm$, $\pi_{max}=5ppm$

Noise (coating loss-angle) reduction factor R_{ϕ} (smaller is better)

$ N_T $								
mater. seq.	10	11	12	13	14	15	16	17
{aSi,Ti::Ta ₂ O ₅ ,SiO ₂ }	no sol.	.406	.413					
{Ti::Ta ₂ O ₅ ,SiO ₂ ,aSi}	no sol.	no sol.	.469	.482				
{SiO ₂ ,aSi,Ti::Ta ₂ O ₅ }	no sol.	.584	.591					

... best N_T = smallest N_T for which target τ_P is attained

28	
32	Best stacked-triplet design: sequence: Silicon, Ti::Tantala, Silica
36	$N_T = 11, \{ s[aSi], s[Ta2O5], s[SiO2] \} =$
10	= { 0.1698, 0.1550, 0.1752 } $\tau_{P} = 5 \ ppm : \pi_{L} = 4.65 \ ppm :$
14	$R_{\phi} = 0.406$
18	

...how does this compare to best SY-ternary coating ?..

SY Ternary-Coatings in a Nutshell

First proposed/analysed in First proposed/analysed in Yam et al., PRD 91 (2015) 042001

 $L_{HWL}(H_{OWL} L_{OWL})^{N_{top}} (H'_{QWL} L_{QWL})^{N_{bot}}$

 \implies Confirmed to be the *optimal design* (lowest thermal noise for $\tau_P \leq \tau_{ref}$ under a prescribed maximum absorbance constraint) among all ternary (aSi, Ta₂O₅, SiO₂) multilayers consisting of QWL-thick layers, by exhaustive search [Pierro et al., 2020].

SY-Coatings References

- Steinlechner et al., PRD 91 (2015) 042001 (first multimaterial (MM) design discussion)
- Yam et al., PRD 91 (2015) 042002 (multimaterial modeling discussion)
- Steinlechner and Martin, PRD 93 (2016) 102001 (discusses design, including cSi top layer)
- Steinlechner et al. PRD 96 (2017) 022007 (discusses Si₃N₄ as candidate MM ingredient)
- Steinlechner et al., Phil. Trans. A376 (2018) 20170282 (nice review of subject)
- Pan et al., PRD 98 (2018) 102001 (discusses SiN_{0.4}H_{0.79} as candidate MM ingredient)
- Byrney et al., PRL 121 (2018) 191101 (best-ever aSi obtained and discussed)
- Craig et al., PRL 122 (2019) 231102 (Si::HfO₂ as candidate MM L-index 3G-cryo material)
- Tait et al., LIGO-P1900002 (measurements on first MM prototype)

SY-Coatings Transmittance [ppm] vs. (N_{top}, N_{bot})

								N_{bc}	ot							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	0	699112.	185947.	35587.4	6372.57	1132.54	206.115	42.74	13.9419	8.86602	7.97138	7.8137	7.78591	7.78101	7.78015	7.77999
	1	430286.	93838.5	17217.4	3059.51	543.094	98.9104	20.6013	6.7984	4.36559	3.93679	3.86122	3.8479	3.84555	3.84514	3.84506
	2	235318.	46123.3	8289.52	1467.68	260.452	47.5241	9.99021	3.37459	2.20857	2.00305	1.96683	1.96044	1.95932	1.95912	1.95908
	3	120536.	22377.6	3981.8	703.827	124.957	22.8943	4.9044	1.73359	1.17473	1.07623	1.05886	1.0558	1.05526	1.05517	1.05515
	4	59689.6	10788.6	1910.54	337.515	60.0087	11.0893	2.46682	0.947077	0.679218	0.632007	0.623686	0.62222	0.621961	0.621916	0.621907
	5	29065.6	5185.58	916.273	161.898	28.8782	5.43117	1.2985	0.570108	0.441726	0.419098	0.41511	0.414407	0.414283	0.414261	0.414257
	6	14037.8	2488.87	439.381	77.7156	13.9573	2.71929	0.738543	0.38943	0.327898	0.317053	0.315141	0.314804	0.314745	0.314734	0.314732
	7	6753.02	1193.78	210.731	37.3652	6.8058	1.41951	0.47016	0.302833	0.273341	0.268143	0.267227	0.267066	0.267037	0.267032	0.267031
	8	3242.48	572.462	101.123	18.0251	3.37814	0.796541	0.341526	0.261328	0.247193	0.244702	0.244262	0.244185	0.244171	0.244169	0.244169
d	9	1555.52	274.532	48.5847	8.75549	1.73529	0.497958	0.279873	0.241435	0.23466	0.233466	0.233256	0.233219	0.233212	0.233211	0.233211
l_{to}	10	745.962	131.706	23.4027	4.31261	0.947892	0.354849	0.250324	0.231901	0.228653	0.228081	0.22798	0.227962	0.227959	0.227959	0.227959
<	11	357.718	63.2438	11.3329	2.18318	0.570498	0.286259	0.236161	0.227331	0.225774	0.2255	0.225452	0.225443	0.225442	0.225441	0.225441
	12	171.583	30.4288	5.54795	1.16256	0.389617	0.253384	0.229373	0.22514	0.224395	0.224263	0.22424	0.224236	0.224235	0.224235	0.224235
	13	82.3577	14.7005	2.77526	0.673385	0.302923	0.237628	0.226119	0.224091	0.223733	0.22367	0.223659	0.223657	0.223657	0.223657	0.223657
	14	39,5902	7.16202	1.44634	0.43893	0.261371	0.230076	0.22456	0.223588	0.223416	0.223386	0.223381	0.22338	0.22338	0.22338	0.22338
	15	19.0916	3.54887	0.809399	0.326558	0.241456	0.226456	0.223812	0.223346	0.223264	0.22325	0.223247	0.223247	0.223247	0.223247	0.223247
	16	9.26663	1.81712	0.50412	0.272699	0.23191	0.224721	0.223454	0.223231	0.223191	0.223185	0.223183	0.223183	0.223183	0.223183	0.223183
	17	4.5576	0.987112	0.357803	0.246885	0.227335	0.22389	0.223282	0.223175	0.223157	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153
	18	2.3006	0.589296	0.287674	0.234513	0.225143	0.223491	0.2232	0.223149	0.22314	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138
	19	1.21884	0.398627	0.254063	0.228583	0.224092	0.2233	0.223161	0.223136	0.223132	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131
	20	0.700359	0.307241	0.237953	0.225741	0.223588	0.223209	0.223142	0.22313	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128

SY-Coatings Transmittance [ppm] vs. (N_{top}, N_{bot})

								N _{bo}	ot -							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	0	699112.	185947.	35587.4	6372.57	1132.54	206.115	42.74	13.9419	8.86602	7.97138	7.8137	7.78591	7.78101	7.78015	7.77999
	1	430286.	93838.5	17217.4	3059.51	543.094	98.9104	20.6013	6.7984	4.36559	3.93679	3.86122	3.8479	3.84555	3.84514	3.84506
	2	235 318.	46123.3	8289.52	1467.68	260.452	47.5241	9.99021	3.37459	2.2/.37	2.03 05	1.5 633	1. ت ۸ 44	1.97.32	5912 د 1	7. 5908
	3	120536.	22377.6	3981.8	703.827	124.957	22.8943	4.9044	1.73.59	1.174/3	1.07 23	1.0 886	1, 558	1 05526	1.05517	1.05515
	4	59689.6	10788.6	1910.54	337.515	60.0087	11.0893	2.46692	0.947677	0.6792.8	0.632307	0.6.3686	0.62222	J.621961	0.621916	0.621907
	5	29065.6	5185.58	916.273	161.898	28.8782	5.43117	1.2985	0.57010	0.44172	0.419 <mark>9</mark> 8	0.4 <mark>.</mark> 511	3.414407	0.41428	0.410.61	0.414257
	6	14037.8	2488.87	439.381	77.7156	13.9573	2.71929	0.738543	0.38943	0.327898	0.317(53	0.315141	0.314804	0.314'45	0,714734	0.314732
	7	6753.02	1193.78	210.731	37.3652	6.8058	1.4155	0.47016	9.302833	0.273341	0.2681 3	0.: 67227	0.26706	0.2,7037	J.267032	0.267031
	8	3242.48	572.462	101.123	18.0251	3.37814	0.796541	9.341526	0.261328	247193	0.2447(2	0. 44262	0.244 ¹ 85	0.244171	0.244169	0.244169
d	9	1555.52	274.532	48.5847	8.75549	1.73529	0.497958	0.279873	0.241435	0.23466	9.233465	0. 3325	0.23,219	0.23321.2	0.233211	0.233211
V_{to}	10	745.962	131.706	23.4027	4.31261	9 947892	0.354849	0.250324	0.231961	0.2.8653	£.22808	0.279	0.727962	0.22/959	0.227959	0.227959
<	11	357.718	63.2438	11.3329	2.18318	0.570498	9.286259	0 236161	0 227331	0.225774	0.2255	0.225 _. 52	د 22544 ه	9.225442	0.225441	0.225441
	12	171.583	30.4288	5.54795	1.16256	0.389617	0.253384	0.229373	0.22514	9.2243.5	0.124263	0 22 ,24	0.224236	0.224235	0.224235	0.224235
	13	82.3577	14.7005	2.77526	0.073305	0.302923	0.237628	0.226119	0.224091	Fixed	$-\frac{0.22367}{N_{\rm b}}$		imum	_thick	iness).223657
	14	39,5902	7.16202	1.44634	0.43893	0.261371	0.230076	0.22400	0.002620	decia	0.223300		0.22338	0.22338 Ecococc	0.22338).22338
	15	19.0916	3.54887	A 900200	0.020550	0.241430	0.226456	0.223812	0.220040	desig	nszzyre	elaing	$\tau_{P^{32}} \geq$	Sppn	0.223247).223247
	16	9.26663	1.81712	0.50412	0 272600	0.25191	0.224721	0.223454	0.223231	0.223191	0.223185	0.223183	0.223183	0.223183	0.223183	0.223183
	17	4.5576	0.987112	0.357803	0.246885	0.227335	0.22389	0.223282	0.223175	0.223157	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153
	18	2.3045	0.589296	0.287674	0.234513	0.225143	0.223491	0.2232	0.223149	0.22314	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138
	19	1.21884	0.398627	0.254063	0.228583	0.224092	0.2233	0.223161	0.223136	0.223132	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131
	20	0.700359	8 307241	0.237953	0.225741	0.223588	0.223209	0.223142	0.22313	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128

Reference Silica/Ti::Tantala-only SD design with $\tau_P \leq 5ppm@1550nm$

SY-Coatings ϕ_C Reduction Factor vs (N_{top} , N_{bot})

								N _{bot}	-							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	0	0.0726143	0.109162	0.14571	0.182258	0.218806	0.255354	0.291902	0.32845	0.364998	0.401546	0.438094	0.474642	0.51119	0.547739	0.584287
	1	0.127166	0.163714	0.200262	0.23681	0.273358	0.309906	0.346455	0.383003	0.419551	0.456099	0.492647	0.529195	0.565743	0.602291	0.638839
	2	0.181719	0.218267	0.254815	0.291363	0.327911	0.364459	0.401007	0.437555	0.474103	0.510651	0.547199	0.583747	0.620295	0.656843	0.693391
	3	0.236271	0.272819	0.309367	0.345915	0.382463	0.419011	0.455559	0.492107	0.528655	0.565203	0.601751	0.638299	0.674847	0.711395	0.747943
	4	0.290823	0.327371	0.363919	0.400467	0.437015	0.473563	0.510111	0.546659	0.583207	0.619755	0.656303	0.692851	0.729399	0.765947	0.802495
	5	0.345375	0.381923	0.418471	0.455019	0.491567	0.528115	0.564663	0.601211	0.637759	0.674307	0.710855	0.747403	0.783951	0.820499	0.857047
	6	0.399927	0.436475	0.473023	0.509571	0.546119	0.582667	0.619215	0.655763	0.692311	0.728859	0.765407	0.801955	0.838503	0.875051	0.911599
	7	0.454479	0.491027	0.527575	0.564123	0.600671	0.637219	0.673767	0.710315	0.746863	0.783411	0.819959	0.856507	0.893055	0.929603	0.966151
	8	0.509031	0.545579	0.582127	0.618675	0.655223	0.691771	0.728319	0.764867	0.801415	0.837963	0.874511	0.911059	0.947607	0.984155	1.0207
2	9	0.563583	0.600131	0.636679	0.673227	0.709775	0.746323	0.782871	0.819419	0.855967	0.892515	0.929063	0.965611	1.00216	1.03871	1.07526
top	10	0.618135	0.654683	0.691231	0.727779	0.764327	0.800875	0.837423	0.873971	0.910519	0.947067	0.983615	1.02016	1.05671	1.09326	1.12981
Z	11	0.672687	0.709235	0.745783	0.782331	0.818879	0.855427	0.891975	0.928524	0.965072	1.00162	1.03817	1.07472	1.11126	1.14781	1.18436
	12	0.72724	0.763788	0.800336	0.836884	0.873432	0.90998	0.946528	0.983076	1.01962	1.05617	1.09272	1.12927	1.16582	1.20236	1.23891
	13	0.781792	0.81834	0.854888	0.891436	0.927984	0.964532	1.00108	1.03763	1.07418	1.11072	1.14727	1.18382	1.22037	1.25692	1.29346
	14	0.836344	0.872892	0.90944	0.945988	0.982536	1.01908	1.05563	1.09218	1.12873	1.16528	1.20182	1.23837	1.27492	1.31147	1.34802
	15	0.890896	0.927444	0.963992	1.00054	1.03709	1.07364	1.11018	1.14673	1.18328	1.21983	1.25638	1.29292	1.32947	1.36602	1.40257
	16	0.945448	0.981996	1.01854	1.05509	1.09164	1.12819	1.16474	1.20128	1.23783	1.27438	1.31093	1.34748	1.38402	1.42057	1.45712
	17	1.	1.03655	1.0731	1.10964	1.14619	1.18274	1.21929	1.25584	1.29238	1.32893	1.36548	1.40203	1.43858	1.47512	1.51167
	18	1.05455	1.0911	1.12765	1.1642	1.20074	1.23729	1.27384	1.31039	1.34694	1.38348	1.42003	1.45658	1.49313	1.52968	1.56622
	19	1.1091	1.14565	1.1822	1.21875	1.2553	1.29184	1.32839	1.36494	1.40149	1.43804	1.47458	1.51113	1.54768	1.58423	1.62078
	20	1.16366	1.2002	1.23675	1.2733	1.30985	1.3464	1.38294	1.41949	1.45604	1.49259	1.52914	1.56568	1.60223	1.63878	1.67533

SY-Coatings ϕ_C Reduction Factor vs (N_{top} , N_{bot})

								N _{bo}	t							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	0	0.0726143	0.109162	0.14571	0.182258	0.218806	0.255354	0.291902	0.32845	0.364998	0.401546	0.438094	0.474642	0.51119	0.547739	0.584287
	1	0.127166	0.163714	0.200262	0.23681	0.273358	0.309906	0.346455	0.383003	0.419551	0.456099	0.492647	0.529195	0.565743	0.602291	0.638839
	2	0.181719	0.218267	0.254815	0.291363	0.327911	0.364459	0.401007	0.437555	0.4,+103	0.510551	0.5 7199	3747د : ۵۰	0.020295	v L56843	r. 93391
	3	0.236271	0.272819	0.309367	0.345915	0.382463	0.419011	0.455559	0.452107	0.528555	0.56 203	0.6)1751	38299 ن	0 674847	0.711395	0.747943
	4	0.290823	0.327371	0.363919	0.400467	0.437015	0.473563	0.510111	0.546 59	0.583237	0.61 755	0.€ <mark>5630</mark> 3	692851	J.729399	0.765947	0.802495
	5	0.345375	0.381923	0.418471	0.455019	0.491567	0.528115	0.56+:63	0.60121	0.637757	0.674 <mark>3</mark> 07	0.10855	ð.747403	0.78395.	0.820+99	0.857047
	6	0.399927	0.436475	0.473023	0.509571	0.546119	0.582667	0.619215	0.655763	0.692311	0.728 59	0. 65407	0.801955	0.838,03	0.575051	0.911599
	7	0.454479	0.491027	0.527575	0.564123	0.600671	0.6.,219	0.673767	0.710315	0.746863	0.783411	0. 19959	0.85650	0.8/3055	0.929603	0.966151
	8	0.509031	0.545579	0.582127	0.618675	0.655223	0.691771	0.728319	64867	9.801415	0.8379 3	0.374511	0.911/59	947607 و.94	0.984155	1.0207
9	9	0.563583	0.600131	0.636679	0.673227	0.709775	0.746323	0.782871	0.819419	0 855967	0.8925.5	0.)2906)	0.965611	1.00215	1.03871	1.07526
tol	10	0.618135	0.654683	0.691231	0.727779	9.764327	0.800875	0.837423	0.873571	0.510519	1.947067	0.9836.5	1. 2016	1.05671	1.09326	1.12981
Z	11	0.672687	0.709235	0.745783	0.782331	0.818879	0.855427	0.821975	9.928524	0.96.072	1 00162	1 038.17	1.07471	1.11126	1.14781	1.18436
	12	0.72724	0.763788	0.800336	0.836884	0.873432	0.90998	0.946528	0.962076	1.0196?	1.\5617	1 09272	1.12°27	1.16582	1.20236	1.23891
	13	0.781792	0.81834	0.854888	0.001426	0.927984	0.964532	1.0010	1.05763	Coati	ng los	s-angl	e redu	uction	facto	rs of
	14	0.836344	0.872892	0.90944	0.945988	0.982536	1.01908	1.05005	1 00710	Coati	ing ios	s-aligi	1,23837	1.27492	lacto	1,34802
	15	0.890896	0.927444	0.062002	1.00054	1.00709	1.0/364	1.1/018	1.140/0	the fi	xed —	N _{bot} I	minim	um –t	nickn	ess ₀₂₅₇
	16	0.945448	0.981996	1.01854	1.05500	1.09104	1.12819	1 16474	1.20128	desig	nsayie	lding	$\tau_P \leq$	5ppn	n 1.42057	1.45712
	17	1.	1.03055	1.0731	1.10964	1.14619	1.18274	1.21929	1.25584	1.29238	1.52895	1.36548	1.40203	1.43858	1.4/512	1.5116/
	18	1725455	1.0911	1.12765	1.1642	1.20074	1.23729	1.27384	1.31039	1.34694	1.38348	1.42003	1.45658	1.49313	1.52968	1.56622
	19	1.1091	1.14565	1.1822	1.21875	1.2553	1.29184	1.32839	1.36494	1.40149	1.43804	1.47458	1.51113	1.54768	1.58423	1.62078
	20	1.16366	1.2002	1.23675	1.2733	1.30985	1.3464	1.38294	1.41949	1.45604	1.49259	1.52914	1.56568	1.60223	1.63878	1.67533

Best (lowest-noise) SY-design with $au_P \leq 5ppm$

Reference design

SY-Coatings Absorbance [ppm] vs. (N_{top} , N_{bot} **)**

								N _{bot}	ţ							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	0	0	5.97768	7.44409	7.72016	7.7694	7.7781	7.77963	7.7799	7.77995	7.77996	7.77996	7.77996	7.77996	7.77996	7.77996
	1	0.0969963	3.12759	3.71666	3.82236	3.84105	3.84434	3.84492	3.84503	3.84504	3.84505	3.84505	3.84505	3.84505	3.84505	3.84505
	2	0.157082	1.65082	1.90511	1.94958	1.9574	1.95878	1.95903	1.95907	1.95908	1.95908	1.95908	1.95908	1.95908	1.95908	1.95908
	3	0.190016	0.915819	1.03103	1.05091	1.0544	1.05502	1.05513	1.05515	1.05515	1.05515	1.05515	1.05515	1.05515	1.05515	1.05515
	4	0.2069	0.557085	0.610748	0.619947	0.621561	0.621845	0.621895	0.621904	0.621905	0.621906	0.621906	0.621906	0.621906	0.621906	0.621906
	5	0.215264	0.383642	0.409001	0.413334	0.414094	0.414228	0.414251	0.414255	0.414256	0.414256	0.414256	0.414256	0.414256	0.414256	0.414256
	6	0.219337	0.300163	0.312234	0.314294	0.314655	0.314718	0.31473	0.314732	0.314732	0.314732	0.314732	0.314732	0.314732	0.314732	0.314732
	7	0.221305	0.260072	0.265839	0.266822	0.266994	0.267025	0.26703	0.267031	0.267031	0.267031	0.267031	0.267031	0.267031	0.267031	0.267031
	8	0.222251	0.240839	0.243598	0.244068	0.244151	0.244165	0.244168	0.244168	0.244168	0.244168	0.244168	0.244168	0.244168	0.244168	0.244168
9	9	0.222706	0.231616	0.232938	0.233163	0.233202	0.233209	0.23321	0.233211	0.233211	0.233211	0.233211	0.233211	0.233211	0.233211	0.233211
toj	10	0.222924	0.227195	0.227828	0.227936	0.227955	0.227958	0.227959	0.227959	0.227959	0.227959	0.227959	0.227959	0.227959	0.227959	0.227959
Z	11	0.223028	0.225075	0.225379	0.22543	0.22544	0.225441	0.225441	0.225441	0.225441	0.225441	0.225441	0.225441	0.225441	0.225441	0.225441
	12	0.223078	0.22406	0.224205	0.22423	0.224234	0.224235	0.224235	0.224235	0.224235	0.224235	0.224235	0.224235	0.224235	0.224235	0.224235
	13	0.223102	0.223573	0.223642	0.223654	0.223656	0.223657	0.223657	0.223657	0.223657	0.223657	0.223657	0.223657	0.223657	0.223657	0.223657
	14	0.223114	0.223339	0.223373	0.223378	0.223379	0.22338	0.22338	0.22338	0.22338	0.22338	0.22338	0.22338	0.22338	0.22338	0.22338
	15	0.223119	0.223227	0.223243	0.223246	0.223247	0.223247	0.223247	0.223247	0.223247	0.223247	0.223247	0.223247	0.223247	0.223247	0.223247
	16	0.223122	0.223174	0.223181	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183
	17	0.223123	0.223148	0.223152	0.223152	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153
	18	0.223124	0.223136	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138
	19	0.223124	0.22313	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131
	20	0.223124	0.223127	0.223127	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128

SY-Coatings Absorbance [ppm] vs. (N_{top}, N_{bot})

								N _{bot}	-							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	0	0	5.97768	7.44409	7.72016	7.7694	7.7781	7.77963	7.7799	7.77995	7.77996	7.77996	7.77996	7.77996	7.77996	7.77996
	1	0.0969963	3.12759	3.71666	3.82236	3.84105	3.84434	3.84492	3.84503	3.84504	3.84505	3.84505	3.84505	3.84505	3.84505	3.84505
	2	0.157082	1.65082	1.90511	1.94958	1.9574	1.95878	1.95903	1.95907	1.95908	1.95908	1.95908	1.95908	1.95908	1.95908	1.95908
	3	0.190016	0.915819	1.03103	1.05091	1.0544	1.05502	1.05513	1.05515	1.05515	1.05515	1.05515	1.05515	1.05515	1.05515	1.05515
	4	0.2069	0.557085	0.610748	0.619947	0.621561	0.621845	0.621895	0.621904	0.621905	0.621906	0.621906	0.621906	0.621906	0.621906	0.621906
	5	0.215264	0.383642	0.409001	0.413334	0.414094	0.414228	0.414251	0.414255	0.414256	0.414256	0.414256	0.414256	0.414256	0.414256	0.414256
	6	0.219337	0.300163	0.312234	0.314294	0.314655	0.314718	0.31473	0.314732	0.314732	0.314732	0.314732	0.314732	0.314732	0.314732	0.314732
	7	0.221305	0.260072	0.265839	0.266822	0.266994	0.267025	0.26703	0.267031	0.267031	0.267031	0.267031	0.267031	0.267031	0.267031	0.267031
	8	0.222251	0.240839	0.243598	0.244068	0.244151	0.244165	0.244168	0.244168	0.244168	0.244168	0.244168	0.244168	0.244168	0.244168	0.244168
a	9	0.222706	0.231616	0.232938	0.233163	0.233202	0.233209	0.23321	0.233211	0.233211	0.233211	0.233211	0.233211	0.233211	0.233211	0.233211
t_{0}	10	0.222924	0.227195	0.227828	0.227936	0.227955	0.227958	0.227959	0.227959	0.227959	0.227959	0.227959	0.227959	0.227959	0.227959	0.227959
<	11	0.223028	0.225075	0.225379	0.22543	0.22544	0.225441	0.225441	0.225441	0.225441	0.225441	0.225441	0.225441	0.225441	0.225441	0.225441
	12	0.223078	0.22406	0.224205	0.22423	0.224234	0.224235	0.224235	0.224235	0.224235	0.224235	0.224235	0.224235	0.224235	0.224235	0.224235
	13	0.223102	0.223573	0.223642	0.223654	0.223656	0.223657	0.223657	0.223657	0.223657	0.223657	0.223657	0.223657	0.223657	0.223657	0.223657
	14	0.223114	0.223339	0.223373	0.223378	0.223379	0.22338	0.22338	0.22338	0.22338	0.22338	0.22338	0.22338	0.22338	0.22338	0.22338
	15	0.223119	0.223227	0.223243	0.223246	0.223247	0.223247	0.223247	0.223247	0.223247	0.223247	0.223247	0.223247	0.223247	0.223247	0.223247
	16	0.223122	0.223174	0.223181	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183	0.223183
	17	0.223123	0.223148	0.223152	0.223152	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153	0.223153
	18	0.223124	0.223136	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138	0.223138
	19	0.223124	0.22313	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131	0.223131
	20	0.223124	0.223127	0.223127	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128	0.223128

SY-designs purple-circled have $\pi_L \leq 5 \ ppm$; minimum-noise design has $\pi_L = 3.48 ppm$

Thickness-Optimized SY-Coatings

• Optimum design for $\tau_P \leq 5 ppm$, $P_L \leq 5 ppm$ is $N_T = 1$, $N_b = 8$, featuring $\tau_P = 4.36 ppm$, $P_L = 3.84 ppm$, $R_{\phi} = 0.419$.

Explore thickness optimized version:

Top stack: $\delta_H = 0.25 + \xi$, $\delta_L = 0.25 - \xi$, $\xi \in (0, 0.25)$ Bottom Stack: $\delta_{H'} = 0.25 + \eta$, $\delta_L = 0.25 - \eta$, $\eta \in (0, 0.25)$ (increasing ξ and/or η will decrease thermal noise)

Pick up (ξ , η) yielding minimum noise and acceptable loss, for some candidate { N_{top} , N_{bot} ,}, keeping τ_P at the design value

Thickness Optimized SY-Coatings, contd.

Noise PSD (coating loss-angle) reduction factor R_{ϕ} , thickness-optimized SY-Coatings:

$\sim N_{bot}$										
N _{top}	5	6	7	8	9	10	11	12	13	14
1	-	-	-	.379	.381					
2	-	-	.383	.367	.364	.365				
3	-	.446	.400	.390	.387	.386	.387	.389		
4	-	.446	.428	.421	.419	.417	.417	.418	.419	
5	-	.472	.460	.455	.452	.451	.451	.451	.452	
6	.525	.503	.494	.490	.487	.486	.486	.486	.487	

• The QWL (1,8) SY-design features a coating loss-angle reduction factor (compared to the reference 17-doublets design) R_{ϕ} =0.419.

- A few thickness-optimized designs (highlighted in cyan in the Table) can do better on the first decimal figure (improvements at the level of the 2nd decimal figure and beyond would be likely spoiled by deposition errors).
- The best thickness-optimized SY-design has

 $(N_{top}=2, N_{bot}=9)$, ($\xi=0.0475, \eta=0.1079$) with a noise reduction factor $R_{\phi}=0.364$.

Conclusions

- Stacked-triplet coatings based, e.g., on Silica, (Ti::)Tantala and *a*Silicon are easily designed;
- Generalization to more than 3 materials is straightforward in principle, in view of Larruquert rule;
- At 1550nm and 10K a stacked-triplet aSilicon/Ti::Tantala/Silica coating with $\tau_P = 5 \ ppm$ has a coating loss angle (noise PSD) smaller by a factor $R_{\phi} = 0.406$ compared to the reference $5 \ ppm$ Silica/Ti::Tantala design, slightly better compared to the best SY-coating ($R_{\phi} = 0.419$), with an absorbance of 4.65ppm (vs 3.85ppm for the SY-design);
- Thickness-optimization improves the performance of SY-ternary coatings; for the ET-LF like case considered here the coating noise PSD reduction factor R_{ϕ} drops from 0.419 to 0.368;
- Further analysis/comparison, in terms of, e.g., spectral response flatness, robustness vs. deposition tolerances, coating stress distribution etc. is in order;
- Whole new world of options (triplet/doublet and multiplet compounds) !

Acknowledgement

This work has been developed in part within the tuition activity of MIT student **Rokas Veitas**, during his stay at USannio in January 2020, in the frame of the MIT - USannio externship program. Rokas contribution, and many stimulating discussions with him are kindly acknowledged.

Benevento, IT Jan 20th 2020

Questions/Comments Welcome !

