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This research aims at assessing with software simulations the possibility of inferring the polar-
ization content of a transient gravitational waves (GWs) within a Bayesian framework, given the
extended network of five ground interferometers available in the near future. The response of a
network of GW interferometric detectors will be studied in order to discriminate between different
polarizations. The methodology developed - on simulated data - provides a powerful check for one
of the fundamental predictions of General Relativity, and is thus of major significance in both the
fundamental physics of gravity and the astrophysics of gravitational-wave sources. In the following,
it is shown that through Bayesian inference it is indeed possible (in simulation) to extract the polar-
ization content of transient gravitational wave signals accurately, and with precision limited by the
signal-to-noise ratio (SNR) in the response. The precision mostly improves with the network mean
SNR as expected, with some exceptions, due either to a SNR distributed very unevenly between the
five detectors or statistical fluctuations in the Bayesian sampler.

I. CONTEXT

Metric theories of gravity alternative to General Rela-
tivity (GR) imply the presence of specific GW polariza-
tions other than the tensor ones predicted by GR. A fun-
damental goal of GW physics is therefore to find viable
ways to detect and measure GW polarizations. We begin
with a brief summary about detecting and studying GW
polarizations with laser interferometeric GW detectors.
The notation used is taken from [1].

A. Linearized Metric Theory of Gravity

In the weak-field regime (or in the far-field limit), an
appropriate coordinate system can be found in which the
full metric gµν can be expressed as a perturbation hµν of
order ε of the Minkowskian metric ηµν :

gµν = ηµν + hµν . (1)

We can introduce a restricted class of coordinate trans-
formations, called Gauge Transformations, such that the
transformed metric is still separable into a flat back-
ground and a perturbation. These transformations are
induced by a vector field ζµ(xν), with ‖ζµ,ν‖ ∼ O(ε) such
that the perturbation in the new coordinates becomes:

h′µν = hµν − ζ{µ,ν} +O(ε2) . (2)

In terms of the perturbed metric, the Riemann Tensor
is written as:

Rµναβ =
1

2
(hµβ,να + hνα,µβ − hµν,αβ − hαβ,µν) . (3)

It is noteworthy to stress that the Riemann Tensor is an
invariant under gauge transformations, since it encodes

only the information about gravity, without keeping track
of the chosen coordinate system.

Fixing a gauge is a way to use the freedom we have in
the choice of the vector field ζµ to simplify our problem
and reduce the ten degrees of freedom of the symmetric
rank-2 tensor hµν down to six. In GR, a common gauge
choice in vacuum is the Lorentz gauge (also known as har-
monic gauge) h̄µν,µ = 0, where h̄µν = hµν − 1

2hηµν . This
gauge is adopted because it simplifies the Einstein ten-
sor. The residual gauge freedom given by field equations
(direct consequence of the Bianchi identity applied to
the Einstein tensor) allows one to further impose h0i = 0
and h = 0, leaving only two radiative degrees of freedom,
the two tensorial polarizations. This last choice is often
called the trasverse-traceless gauge, or TT-gauge. In a
non-GR theory, since the field equations are different, we
have to take into account all six degrees of freedom.

B. GW Polarizations

We want to describe the Fabry-Perot Michelson inter-
ferometer hit by a (plane) GW as two couples of test
masses (at the edge of the two Fabry-Perot cavities, situ-
ated in the two arms of the detector) subject to a metric
perturbation: the response of the detector depends on
the difference in travel time along the two arms. The
behavior of the separation vector ξα between the two
freely-falling test masses with 4-velocity uβ is given by
the equation of geodesic deviation:

D2ξµ

dt2
= −Rµναβu

νξαuβ . (4)
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FIG. 1. Effect of different GW polarizations on a ring of
free-falling test particles. Plus (+) and cross (×) tensor modes
(green); vector-x (x) and vector-y (y) modes (red); breathing
(b) and longitudinal (l) scalar modes (black). In all of these
diagrams the wave propagates in the z direction. This de-
composition into polarizations was first proposed for generic
metric theories in [2]. (Reproduced from [3].)

For slowly moving particles, we can rewrite the previous
equation as:

d2ξj
dt2

= −c2R0j0kξ
k = − G

2c4D

∂

∂τ2
Sjk(τ,N)ξk . (5)

where D is the distance from the source of GW,
N = (cosφ sin θ, sinφ sin θ, cos θ) is a unit 3-vector which
points toward the direction of the source in the sky (di-
rection of propagation of the wave) while the Sij contains
the proper time dependent amplitudes of the perturba-
tion. Integrating over time, we obtain the equation of
motion for the displacement of the detector arms at first
order:

ξj(t) = ξj(0) +
G

2c4D
Sjk(τ,N)ξk(0) . (6)

Assuming that the wave travels along the z-direction, we
have:

Sjk =

Ab +A+ A× AV x
A× Ab −A+ AV y
AV x AV y Al

 . (7)

Six degrees of polarization can be identified through
their effect on a ring of free-falling test particles (see fig.
1). Two scalar (Ab and Al), called respectively breathing
and longitudinal modes, one of which (Ab) is transverse
with respect to the direction of propagation of the wave.
Two vector (Ax and Ay) modes, partly longitudinal and
partly transverse. Finally, two tensorial (A× and A+)
transverse modes. GR only allows for A× and A+.

From a field-theoretic point of view, polarizations are
strictly correlated with the helicity (projection of the spin
along the motion) of the graviton: a massless graviton has
only ±2 helicity, which corresponds to the two tensorial
polarizations of GR.

II. STUDY OF THE SENSITIVITY OF A
NETWORK OF INTERFEROMETRIC

DETECTORS

A. Antenna patterns of a two-arm and three-arm
interferometer

While the amplitudes and the phases of GWs de-
pend crucially on the source dynamic, the response of
a quadrupolar antenna to them is determined by the ge-
ometry of the system source-detector (up to an overall
normalization). Let e1 and e2 be the unit vectors aligned
with the two arms of the interferometer. The differential
arm (DARM) response function is given by:

S(t) =
1

2
(ej1e

k
1 − e

j
2e
k
2)Sjk(τ,N) . (8)

We can now consider an orthonormal basis (N, eX, eY)
to fully describe the polarization of the wave, where
(eX, eY) are rotated by an angle ψ (called angle of po-
larization) around N with respect to the basis (e′1, e

′
2).

These primed vectors are obtained by two subsequent
rotations of (e1, e2) that align the basis of the interfer-
ometer along N. We can write the total response as a
function of three angles (θ, φ, ψ):

S(t) = FP (θ, φ, ψ)AP (9)

where P = {b, l, x, y,+,×}, the F ’s are called antenna
pattern functions and the sum runs over all polarizations
P .

Preliminarily, a complete study of the antenna pat-
terns for a two-arm and a three-arm interferometer was
performed. The results are reported in fig.2 and fig.3.
For a detailed description of the three-arm interferome-
ter simulated, see [4]. As it is shown, the detector re-
sponse to the scalar polarizations (apart from a sign) is
completely degenerate for both the configurations, there-
fore the two cannot be distinguished from each other and
from now on we will consider only a single scalar mode S,
with corresponding antenna response FS . Furthermore,
the sensitivity of a three-arm detector is - on average -
greater than the two-arm configuration, presenting also
a peculiar azimuthal symmetry in the detector frame.

B. Network sensitivity and overlap factor

In the measurement of GW polarizations, eight differ-
ent unknowns play a role: the six polarization modes
and the two angles that identify the position of the
source in the sky. However, as mentioned earlier, the
DARM response functions of a laser interferometer to
the two scalar modes are completely degenerate, and
we are therefore left with five independent polarization
modes. The number of available quadrupolar antennas
is then crucial to measure the polarization content. Fur-
thermore, the orientation of the arms of the instruments
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FIG. 2. Angular response of a two-arm interferometer to
each GW polarization. The radial distance represents the re-
sponse of a single two-arm quadrupolar antenna to a unit-
amplitude gravitational signal of a tensor (top), vector (mid-
dle), or scalar (bottom) polarization, i.e. |FP | for each po-
larization P for ψ = 0. The polar and azimuthal coordinates
correspond to the source location with respect to the detector,
which is to be imagined as placed with its vertex at the center
of each plot and arms along the x and y-axes. The response
is plotted to scale, such that the blue lines representing the
detector arms have unit length in all plots.

plays a fundamental role. If the arms of a pair of inter-
ferometers are aligned, while the the probability of coin-
cident (between detectors) detection is maximized, there
is the downside that the antenna pattern function will
be the same, preventing the possibility of distinguish-
ing between different polarizations. Over the next ten
years, two new interferometers will be available: KA-
GRA (in ∼ 2020) and LIGO-India. Additionally, the
prospect of building a new generation of detectors (so
called 3G detectors) is under discussion and investigation
(for further references, see [5] and [6]). In this study,
the response of the five-interferometer network is stud-
ied, which includes the following detector: LIGO Hanford
(USA), LIGO Livingston (USA), Virgo (Italy), KAGRA
(Japan), and LIGO-India. The position of each detector
on the Earth’s surface is shown in fig.4.

If we are interested to the sensitivity of a network of N
detectors, setting ψ = 0 since we are not dealing with any
specific source, it is useful to define the effective response

FIG. 3. Angular response of a three-arm interferometer to
each GW polarization. The radial distance represents the re-
sponse of a system with a triangular topology, where the arms
of the equilateral triangle are each used twice to form three
Michelson interferometers. It can be analytically shown that
the response to GW different polarizations is equivalent to
that of two L-shaped detectors of length 3L/4. In the figure,
the response to a unit-amplitude gravitational signal of a ten-
sor (top), vector (middle), or scalar (bottom) polarization is
shown, i.e. |FP | for each polarization P for ψ = 0. The polar
and azimuthal coordinates correspond to the source location
with respect to the detector, which is to be imagined as placed
with its center in the origin of each frame. The response is
plotted to scale, such that the black lines representing the
detector arms have unit length in all plots.

FIG. 4. Five-interferometer network available in the near
future, used for this research.
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FIG. 5. Overlaps of LIGO-Virgo network effective antenna
patterns. The normalized inner-products of Eq. (11) for the
three-instrument network. The top plot compares vector to
tensor Fv/t, and the bottom one compares scalar to tensor
Fs/t. Red (blue) marks regions for which the effective non-
tensor response is greater (less) than tensor. A map of Earth
is overlaid for reference.

vector as:

~FH(θ, φ) := (|F 1
H(θ, φ)|, ..., |FNH (θ, φ)|) (10)

where the F iH ’s are the sum in quadrature of the two
antenna patterns of the i-th detector for each polarization
H = {s, v, t} (scalar, vector, tensor). We can evaluate
the effective sensitivity of the network to non-tensorial
polarizations with respect to tensorial ones by computing
the overlap factor:

FH/t =
~FH(θ, φ) · ~Ft(θ, φ)

~Ft(θ, φ) · ~Ft(θ, φ)
. (11)

It is essential to quantify in advance, through simula-
tions, how GW detector configuration choices affect our
ability to measure the GW polarization content, as this
measurement can place strong, fundamental constraints
on theories of gravity. From the definition of overlap
given in Eq. (11), we can draw skymaps of relative sen-
sitivity. This has been done in [3] for the three-detector
LIGO-Virgo network. We extended the study up to the
five-interferometer network.

To allow the comparison with the actual three-
interferometer network, skymaps for both networks are

FIG. 6. Overlaps of the five-detector network effective an-
tenna patterns. The normalized inner-products of Eq. (11)
for the five-instrument network. The top plot compares vec-
tor to tensor Fv/t, and the bottom one compares scalar to
tensor Fs/t. Red (blue) marks regions for which the effective
non-tensor response is greater (less) than tensor. A map of
Earth is overlaid for reference.

shown, in fig.5 (LIGO-Virgo network) and fig.6 (five-
detector network). Colored regions roughly correspond
to areas in the sky for which the tensor and the non-
tensor responses are highly distinguishable. Notice that
the patterns are anchored to angular locations with re-
spect to Earth (not the fixed stars): in other terms, the
shown sensitivity depends only on the the specific loca-
tion and orientation of the detectors in the considered
network. To find the correspondent sky location in the
celestial sphere, sidereal time of arrival of the signal must
be taken into account.

For a more detailed quantitative study of the overlap
factor, the probability distribution function (for all sky
locations) of each overlap is plotted in fig.7 and fig.8. The
extended network (that from now on will be referred as
the network) will be the least sensitive to scalar modes
(since the interferometers are individually less sensitive
to these); but with five detectors, the sensitivity to scalar
polarization is improved by one order of magnitude with
respect to the three-detector configuration. From this
first quantitative analysis, which is exclusively based on
the reciprocal position and orientation of detectors, it is
already possible to infer that with the addition of two
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FIG. 7. Probability distribution function of the overlaps for
LIGO-Virgo network.

FIG. 8. Probability distribution function of the overlaps for
the five-detector network.

interferometers, the response to non-GR polarization is
mostly improved.

III. SIMULATED RESPONSE OF THE
NETWORK

A. Methods to extract polarization content

As we have seen previously (Sec. II A), antenna pat-
terns are a direct manifestation of local geometry only
(polarizations and detector geometry), independent of
source or the details of the underlying theory. We may
thus exploit the difference in the response of the network
to the different polarizations to infer the polarization con-
tent of the wave.

There are two ways to extract polarization from an-
tenna patterns if the GW signal is transient.

In the first scenario in which the GW signal has an
optical counterpart that allows for an accurate determi-
nation of the source position [7], it is particularly con-
venient to look for non-GR signal content by construct-
ing GR null stream(s), which are directions in the mul-
tidimensional space of the network response (whose di-
mensions are given by the total number of detectors) in
which there should be no signal if the wave is tensor-
only polarized. Indeed, for N detectors, the signal mani-
fold is N -dimensional with N basis vectors, five of which
can be chosen along the independent antenna patterns
F i+, F

i
×, F

i
x, F

i
y, F

i
s where the Latin index runs along the

N detectors. The remaining N − 5 vectors will give us
null streams, independently from the polarizations of the
wave. The j-th detector datastream can be written in
tensor notation as:

Sj = F jPh
P + nj , (12)

where nj is the noise content in the j-th detector. In the
case of three detectors, we can define a GR null stream,
i.e., a stream without tensor modes, in the following way
(see [8]):

SGR−null =
eijkF

j
+F

k
×

|δijF i+F
j
×|
Si . (13)

Depending on the number of interferometers, we can have
more than one null stream, and with more than five, one
can construct a complete set of null streams that covers
all metric theories of gravity. This method is model in-
dependent, but it has the disadvantage of requiring an
electromagnetic counterpart.

A second method which doesn’t require necessarily
an electromagnetic counterpart is the following: using a
sine-Gaussian analysis to reconstruct the waveform, one
may infer from time delays the source location and then
the best fitting combination of antenna patterns for the
peak in amplitude. This analysis is independent from the
phase evolution and it only needs a well-defined peak (as
shown in [3], Sec. III A). With three interferometers, it
is already possible to infer the direction N of the source
in the sky just measuring time delays, which is given by
the formula:

δtI = N · xI/c . (14)

where δtI is the time delay with respect to the geocenter
and xI joins the geocenter to the detector. With four
interferometers, constraints on the propagation velocity
of GWs can be placed, providing information about the
mass of the graviton and, indirectly, on GW polariza-
tions. The key idea is that, in such test, no polariza-
tion information is extracted from the phase evolution:
in other terms, the template is only used to infer the
source location from the time lag between detectors, and
the best-fitting combination of antenna patterns from the
amplitudes and phases at peak energy. We chose to adopt
this methodology for our research.
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B. Sine-gaussian toy model for a generic transient
Gravitational Wave

A specific source of gravitational waves (with non-GR
polarizations) is generically identified by the following
astrophysical parameters:

• Sky coordinate location: (δ,α);

• Polarization angle: ψ;

• Geocentric sidereal time of arrival: t0;

• Luminosity distance of the source: dL.

In the context of the second methodology described in
the previous subsection (Sec. III A), since we don’t know
the actual waveform of a non-GR polarized wave, it is
reasonable to build a simplified toy model of the response
at each two-arm detector I using a single sine-gaussian
wavepacket with given frequency Ω and relaxation time
τ :

hI(t) = AI cos(Ωt+ φI) exp

[
− (t− t0 − δtI)2

2τ2

]
, (15)

AI =
|A|
dL
|ÃI | , (16)

ÃI =
∑

p∈{+,×,x,y,s}

εpF
I
p . (17)

where:

• εp =
ap
|A|e

iφp are complex coefficients which depend

exclusively on the unknown underlying properties
of the GW generation mechanism (e.g. the tensor
ones, within a triaxial emission model, are func-
tions of the inclination angle ι) and they are also co-
ordinate frame dependent quantities. Since we pick
|A| to be the total amplitude, we expect |εp| ∈ [0, 1];

• |A| =
√∑

p a
2
p is the overall amplitude of the wave;

• F Ip = F Ip (α, δ, ψ = 0, t0) are the antenna patterns
for the detector I. Through setting ψ = 0, we are
choosing a specific polarization frame: we can ar-
bitrarily fix the polarization angle thanks to the
degeneracy between ψ and the two couples of pa-
rameters (ε+, ε×) and (εx, εy), consequence of the
rotational property of antenna patterns (see Ap-
pendix A in [9]);

• φI = arctan I[ÃI ]

R[ÃI ]
− Ω(t0 + δtI) is the measured

phase at the I detector.

FIG. 9. Example of a simulated GW signal as seen by the
network. Concerning the astrophysical parameters, the signal
shown was generated with random sky location (α,δ), ran-
dom polarization angle ψ, sidereal time of arrival at the cen-
ter of the earth t0 = 0 s, unitary luminosity distance dL = 1.
Both lambdas were set to 0.1 with fixed overall amplitude
|A| = 1e − 22, randomly choosing the remaining amplitude
parameters (the two ε’s and the five phases φp). The total du-
ration of the segment is 1 s and the sine-gaussian was chosen
with frequency Ω = (2π)100Hz and damping time τ = 0.1 s.
Time shifts between signals of several tens of ms are due to
the signal propagation (assumed at the speed of light) through
the Earth, while amplitude changes are a direct consequence
of different detectors’ antenna response functions (see II A).
It’s worthy to stress that the polarization analysis is based on
these last amplitude (and phase) differences.

We can also define the normalized effective strain am-
plitudes in the following way:

ht =
√
|ε+|2 + |ε×|2 , (18)

hv =
√
|εx|2 + |εy|2 , (19)

hs = |εs| . (20)

We can introduce two hyper-parameters (coordinate
independent) to quantify how much of the wave is tensor,
vector or scalar polarized, λv and λs, such that:

h2t = 1− λv − λs , (21)

h2v = λv , (22)
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h2s = λs . (23)

The main goal of this research is to establish how well
we can infer the two lambda hyper-parameters from sig-
nals with different SNR. An example of the signal as seen
in each detector of the network can be found in fig.9.

C. Noise, matched filtering and SNR

To give a realistic simulation of the network response,
a gaussian colored noise (weighted in frequency space)
was added to the signal timeseries.

We can imagine our response d(t) at each detector I as
a superposition of a pure signal h(t) and a gaussian col-
ored noise n(t), with a different variance σ(f) according
to a specific power spectral density Sn(f) of the noise for
each detector. In formulae:

dI(t) = hI(t) + nI(t) , (24)

SIn(f) = lim
T→∞

2

T

∣∣∣∣ ∫ T/2

−T/2
nI(t)e

2πiftdt

∣∣∣∣2 . (25)

In this simulation, we used the designed analytical
power spectral density Sn(f) for each detector, in the
most optimistic prevision. If we define the functional W
as the following:

W =

∫ ∞
−∞

d(t)K(t)dt , (26)

it can be shown that W will be maximally sensitive to
the signal if we use as a kernel filter the inverse fourier
trasform of the following:

K̃(f) =
4h̃(f)

Sn(f)
, (27)

where h̃(f) is the Fourier transform of the signal tem-
plate.

This last object is called Wiener’s optimal filter. In
virtue of Parseval’s theorem, we can compute norms in-
tegral both in time and in frequency space, obtaining the
same result (since Fourier transform is a unitary linear
operator). We can now define the Signal-to-Noise Ratio
(SNR) to be:

ρ(t) =
〈h|d〉√
〈h|h〉

, (28)

where we used the notation 〈h|s〉 for the following
scalar product (R stands for the real part)

〈h|d〉 = 4R
∫ ∞
0

h̃∗(f)d̃(f)e2πift

Sn(f)
df . (29)

As it can be seen from the previous relations, the SNR
is a function of time and it can be used for a measure
of how well we can distinguish the signal (and then ex-
trapolate its waveform) from a noisy background. By
Eq. (29), it seems necessary to know in advance the
template h(t) for the signal to recover the correct SNR
(and then to see the signal itself). However, it is worthy
to point out that this analysis can be carried out also
in a model-independent way, using for example a basis
of sine-gaussian waveforms to reconstruct the signal (see
[10]).

An example of a noisy response is shown in fig.10 and
the SNR time series ρ(t) is shown in fig.11.

In the following, we will call the maximum of the func-
tion ρ(t) for each signal the SNR of the event. Notice
that for a pure noise signal, ρ(t) oscillates in the interval
[0, 3]. Usually, an event is considered a signal when it
has a SNR bigger than 8. Noise generation and matched
filtering algorithm were both implemented using pyCBC
libraries [11].

FIG. 10. Example of a simulated GW noisy response of
VIRGO detector and its strain in frequency space. The signal
is not distinguishable by eyes in time space, but its strain in
frequency space (the square root of the PSD of the full re-
sponse) reported in the second plot shows a little bump at
100Hz, the frequency chosen for the sine-gaussian. For com-
parison, it is over plotted the square root of the analytical
PSD used to generate the noise. Notice that, since the to-
tal length of the signal in time is 4 s, the Discrete Fourier
Transform (DFT) has a maximum resolution in frequency of
T−1 = 0.25Hz.
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FIG. 11. Time evolution of the Signal-to-Noise Ratio of the
response in fig.10. As expected, the SNR shows a peak for
the time of arrival of the wave. Since its maximum is barely
above 10, we can classify this event as a low SNR one.

IV. BAYESIAN FRAMEWORK

A. Context

We can divide the task of using Bayes Theorem to
analyze a set of data D into two problems: parameters
estimation and model selection.

Parameters estimation. Given a specific model H
of our data which depend on a set of parameters θ, we
can recover the joint posterior probability distribution
function on the multidimensional space of parameters
P (θ|H,D) through the following relation:

P (θ|H,D) =
P (θ|H)P (D|H,θ)

P (D|H)
(30)

This is just a trivial application of Bayes Theorem, where:

• P (θ|H) are the prior of our model, joint probabil-
ity distribution function that weighs the parameter
space differently according to our previous knowl-
edge on the phenomenon;

• P (D|H,θ) is the likelihood, the core of the com-
putation, a measure on how well our model with
chosen parameters can describe the data observed;

• P (D|H) =
∫
Θ
P (D|H,θ)P (θ|H)dθ is the evidence,

the likelihood integrated over all parameters space
(weighted by the prior), which in this context works
like a normalization factor, but which is crucial in
model selection, as we will see in the following.

Model selection. We can also use Bayes theorem to give
a statistic significance to a model compared with another,

deciding which of several models is more probable in light
of the observed data D, and by how much. This can
be done very easily by considering the ratio of posterior
probabilities obtained using two different model Hi and
Hj , defining the odds for Hi versus Hj as:

Oij =
P (Hi)
P (Hj)

P (D|Hi)
P (D|Hj)

=
P (Hi)
P (Hj)

Bij (31)

In the last equation, we introduced the definition of
Bayes factor Bij which is the ratio of the two evidence
integrals.

B. Analysis

Summarizing the work carried out in [9], given a vec-
tor of responses D of our network, we want to test seven
possible Bayesian hypotheses regarding its polarization
content: it is purely tensor (Ht), purely vector (Hv),
purely scalar (Hs), scalar-tensor (Hst), vector-tensor
(Hvt), scalar-vector (Hsv), scalar-vector-tensor (Hsvt).
Using Bayes theorem, we can expand the probability
P (HS |D) that, given the data, a signal hypotheses can
be accepted:

P (HS |D) =
∑
m

P (Hm)P (D|Hm)/P (D) , (32)

where m ∈ {t, v, s, st, vt, sv, svt}, P (Hm) is a prior on
the model, P (D|Hm) is the marginalized likelihood and
P (D) is a overall normalization constant. We can define
then the odds to detect a non pure-tensor signal as:

Ontt =
∑
m6=t

P (Hm)

P (Ht)
Bmt (33)

There is a subtle difference between a generic tensor
signal and a GR signal, which is relevant only if we know
a priori the inclination of the source within the tri-axial
GR model. An extended study of this difference can be
found in Appendix A of [9].

Besides choosing between different models, we can use
Bayesian statistics to obtain posterior probability den-
sity function on the parameters of a given template for
the waveform, provided that we define correctly all the
contributions that appear in Eq. (30).

Parameters space. Assuming the toy model
as described in Sec. III B, fixing the sine-
gaussian frequency Ω and damping time τ , we
are left with a total of 12 independent parameters
{α, δ, |A|, φ+, φ×, φx, φy, φs, ε×, εy, λv, λs}. Notice that
dL is degenerate with |A|, ψ is degenerate with some
of the amplitudes (as shown in appendix A in [9]) and
the time of arrival t0 cannot be inferred since we simulate
the response of the network for a symmetric interval in
time with respect to t0 itself (2 s before and 2 s after).
Since the heavy computational cost of each simulation,
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we chose to reduce the dimensions of parameters space
down to 6, assuming the overall amplitude and the five
amplitude phases as known.

Priors. Priors in the sky locations are set to be uni-
form over the celestial sphere: the right ascension (α)
prior is flat in the interval [0, 2π) while the cosine of dec-
lination (cos δ) prior is flat in the interval [−1, 1). Priors
on the amplitude parameters (the two λ′s and the two
ε′s) are taken flat in the interval [0, 1), provided we get
the normalization to one of the five ε′s square sum. In-
deed, it can happen that these four amplitudes param-
eters are not compatible with each other: in this case,
we reject the point in the parameter space, weighting it
by a negative infinite likelihood, which is well handled
by Python code as it can be implemented as a NumPy
constant.

Likelihood. For each detector, we assume the noise
(as described in Sec. III C) to be both stationary (the
power spectral density Sn(f) is constant in time) and
gaussian in each frequency bin, characterized only by
having zero mean and a known variance (estimated from
Sn(f) itself). Then the likelihood function for the model
H of parameters θ, given the detector response as in Eq.
(24), is simply the product of Gaussian distributions in
each frequency bin i with adjusted mean value due to the
presence of the signal:

P (d|H,θ;Sn(f)) = exp
∑
i

[
−

2
∣∣∣h̃i(θ)− d̃i

∣∣∣2
TSn(fi)

−1

2
log (πTSn(fi)/2)

]
,

(34)

where

d̃j(f) =
T

N

∑
k

dke
−2πijkf . (35)

is the Discrete Fourier Transform (DFT) of the re-
sponse (the index k runs over time and depends on the
sampling frequency chosen, N is the total number of sam-
ples, T is the total length in time of the response) and h̃
is the DFT of the template, at given parameters θ.

To analyze a network of detectors coherently, we make
the further assumption that the noise is uncorrelated in
each. This allows us to write the coherent network likeli-
hood for data obtained from each detector as the product
of the likelihoods in each detector I:

P (d|H,θ) =
∏
I

P (dI |H,θ;SIn(f)) (36)

A graphical study on the mono-dimensional and bi-
dimensional behaviour of the likelihood in parameter
space is reported in Appendix A for a random signal.

Sampler. At last, we have to define an efficient way
to explore parameters space, the so-called Bayesian sam-
pler, an algorithm that progressively maximizes the likeli-
hood, avoiding local maxima. The algorithm chosen was
Skilling’s nested-sampling [12]: the inference code used
was built in the Dynesty package [13], a free Pure Python,
MIT-licensed Dynamic Nested Sampling package for es-
timating Bayesian posteriors and evidences. The key
idea of nested-sampling is to numerically compute the
evidence, by reducing it into a one-dimensional integral,
defining the variable change in a proper way. Posteriors
on parameters can then be derived with a minimal com-
putational cost. For further details and its application to
GW signals with a detector network, see [14].

V. RESULTS

In this section, we present the results of our research.
As a first example to validate our methodology, we tested
our inference code on two signals of different SNR, to re-
cover six parameters of the wave (sky location and four
amplitudes parameters), as described in Sec. IV B. Trace
plots and corner plots of the results are reported in fig.12
and in fig.13. Trace plots show the evolution of the sam-
pled points in parameters space as a function of the vari-
able X, which corresponds to the one-dimensional vari-
able used to compute the evidence integral. This variable
(or more properly, − ln(X)) can be seen as a proxy to
the number of iterations the algorithm needs to converge
to the global maximum of the likelihood. Corner plots
show the two-dimensional posteriors (marginalized over
all other parameters) for each parameters pair and the
mono-dimensional marginalized posterior distribution of
each single parameter on the diagonal, as recovered by
the algorithm. Red lines identify the injected value in
each plot.

In both cases, the injected value is recovered correctly
with an high accuracy (generally within one sigma), but
the precision of the result crucially depends on the SNR.
In the second simulation, in which the SNR is much
lower, the posterior distributions are much wider and
less peaked on the true value. This is the first impor-
tant result of our study: the network (within this model)
is able to disentangle all the polarization degrees of the
wave, but the precision (i.e. the sensitivity of the net-
work to each specific polarization) strictly depends on
the strength of the signal and its SNR in each detector.

To further analyze the systematic of this behaviour,
we simulated several different signals from sources with
increasing value of the lambdas hyper-parameters, ran-
domly setting the other ten parameters to have for each
value of lambda, three different SNR (in each detector):
greater than 100, between 25 and 100, lower than 30.
We repeated this study for a mixture of two polariza-
tions (setting one of the two lambdas to zero) and three
polarizations (allowing both lambdas to be different from
zero and set to the same value). The marginalized pos-
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FIG. 12. Trace plots and corner plots of a high SNR source. The injected true value (red lines in both plots) is well recovered
after some iterations of the sampling algorithm, with high accuracy and high precision. This specific source was randomly
chosen with an ε× close to zero: the algorithm correctly provides upper limits for its value.

FIG. 13. Trace plots and corner plots of a low SNR source. The injected true value (red lines in both plots) is still well
recovered after some iterations of the sampling algorithm, but with a lower precision with respect to the previous case. This
specific source was randomly chosen with an εy close to zero: the algorithm correctly provides upper limits for its value.
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FIG. 14. Kernel Density Estimation (KDE, see [15]) of marginalized posterior distribution of λs for tensor-scalar polarized
waves (top) and λv for tensor-vector polarized waves (bottom), with different SNR and increasing non-GR content. Both plots
for each kind of two-polarization wave represent the same data: on the x-axis is plotted the true injected value, while on the
y-axis the posterior distribution as recovered by the Bayesian analysis. The difference between the two plots is only in the
way results are plotted: on the left, violin plots for the three SNR sources are superimposed to show if there are systematic
deviations from the line at 45◦, which represent the true injected value. On the right, the three violin plots are plotted next to
each other, so the horizontal grid line is the only meaningful reference for the true value. The white dot inside the distribution
corresponds to the mean value, while the black band represents the first quartile interval.
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FIG. 15. KDE of marginalized posterior distributions of λs (on the left) and λv (on the right) for tensor-vector-scalar polarized
waves, with different SNR and increasing non-GR content. On the x-axis is reported the injected true value (the same for both
the lambdas), while on the y-axis the recovered distributions are superimposed for the three SNR sources. Qualitatively, the
true value for low SNR is recovered generally worse in this case than the previous ones, due to the fact that a highly mixed wave
generally increases the complexity and the possible degeneracies in the parameters space. The white dot inside the distribution
corresponds to the mean value, while the black band represents the first quartile interval.

terior distributions for the lambdas are reported in fig.14
for the two-polarization mixture and fig.15 for the three-
polarization one. As expected, the posterior distribution
is narrower and well-peaked around the injected value the
higher the SNR is. Qualitatively - for low SNR sources -
the more the wave is a mixture of different polarizations,
the worse is generally recovered by the network. This can
be explained thinking that for highly mixed waves we are
adding possible degeneracies to the network responses:
for a complex wave (superposition of many different po-
larizations), it is more difficult to disentangle the single
contributions. Besides this qualitative behaviour, there
isn’t any particular systematic on the value at which the
distribution is peaked at: they are - at least for the low
SNR scenario, in which they differ from the true value -
randomly distributed around the true injected value.

Finally, we simulated many other sources, fixing the
mean SNR (within a range of two units) for the net-
work, in the case of a tensor-vector-scalar polarized wave
with increasing non-GR content. Posterior distribution
for the λs parameter are reported in fig.16. The disentan-
gling power of the network generally increases with the
mean SNR, with some exceptions where either the SNRs
are distributed very unevenly (with a high standard de-
viation) between the detectors or because of statistical
fluctuations in the nested sampling algorithm. This last

hypothesis is confirmed by repeating the analysis for the
same data-sets multiple times, obtaining slightly differ-
ent posterior distributions, compatible with the observed
inversions.

VI. CONCLUSION

Since the response of a network of detectors of GWs is
strictly correlated to the polarization of the wave through
antenna patterns of each interferometer, which depend
only on the relative geometry between source and detec-
tor, an extensive study of the performance of 5 detec-
tor network configurations through simulations (within a
Bayesian approach) is essential.

We have found that, even using a monochromatic sine-
gaussian as toy model for the waveform, the network
of five L-shaped interferometers at designed sensitivity
(LIGO Hanford (USA), LIGO Livingston (USA), Virgo
(Italy), KAGRA (Japan) and LIGO-India) that will be
available in the near future is able to efficiently disentan-
gle the five polarization components for a generic tran-
sient signal: the precision strictly depends on the SNR
of the signal and how it is distributed between the five
detectors. The results were obtained within a Bayesian
framework, using parameters estimation techniques.
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FIG. 16. KDE of the marginalized posterior distributions of λs for tensor-vector-scalar polarized waves, with increasing SNR
mean and non-GR content. On the x-axis is plotted the true injected value, while on the y-axis the posterior distribution as
recovered by the Bayesian analysis. The three violin plots are plotted next to each other, so the horizontal grid line is the only
meaningful reference for the true value. The white dot inside the distribution corresponds to the mean value, while the black
band represents the first quartile interval. Inversions in the behaviour of the recovered distribution for increasing SNR mean
are due both to statistical fluctuations in the sampling algorithm and very unevenly distribution of the SNR between the five
detectors.
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As a first suggested future work, model selection can be
used to discriminate between different models, measuring
the odds of a generic theory of gravity, given the simu-
lated data. It should be noticed that the odds as defined
in Eq. (31) include by definition an Occam’s penalty for
models with an high number of parameters. The evidence
is indeed an integral of the likelihood over all parameters
space weighted by the prior function: more dimensions
we add to this space (i.e. increasing the complexity of
our model), bigger is the numeric value of the integral,
producing smaller odds in favour of the more complex
model.

Since the GW polarization is mainly a geometric fac-
tor, the results found are essentially independent of any
theory model. However, it would be interesting to repeat
the analysis using templates of waves from a generic met-
ric theory of gravity, other than GR. Some of the possible
waveforms for the signal have already been studied in lit-
erature (see [16]): this case will be probably addressed in
a future work.

So far, we dealt exclusively with transient signals.
However, it should be mentioned that if we have a longer
lasting signal (possibly detected with 3G detectors or
LISA), the motion of the interferometer due to Earth’s
rotation (or the orbital motion of the detector itself)
would allow us to study the evolution in time of antenna
patterns, extracting more information from the single de-
tector. For continuous GW signals, a complete study
with three ground interferometers was done in [9]. An
extension of this methodology can be applied also to a
larger network.

We recall that, the detection of GW non-tensor polar-
izations would be the first, direct evidence of new physics;
at the same time, repeated non-detections would allow us
to place more and more stringent tests on GR.
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Appendix A: One-dimensional and two-dimensional
study of the likelihood

To better understand the complexity of the likelihood,
a graphic study of the function in Eq. 36 for a high
SNR source with random parameters is reported in the
following.

FIG. 17. Likelihood as a function of φ+. On the y-axis the
difference between the value of the likelihood at the x-value
and the value of the likelihood at the injected value is plotted,
while on the x-axis φ+ − φtrue in unit of π is reported.

FIG. 18. Likelihood as a function of A0. On the y-axis
it is plotted the absolute value of the difference between the
value of the likelihood at the x-value and the value of the
likelihood at the injected value. On the x-axis, values for A0

log-uniformly sampled around the injected value. The red line
shows the true injected value for A0.

In fig.17, we can see the behaviour of the likelihood as
a function of one of the phases: we uniformly sampled
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FIG. 19. Likelihood as a function of (α, δ) (left) and (λs, λv) (right).

a one-dimensional slice of the parameter space, allowing
only one of the amplitude phases to vary (φ+), starting
from the injected true value. On the y-axis the difference
between the value of the likelihood at the x-value minus
the value of the likelihood at the injected value is plotted.
If the true injected value is a global maximum for the
likelihood, this difference should be always non positive
and equal to zero only for the true value. We see that
the plot shows the expected behaviour.

In fig.18, the likelihood as a function of the overall
amplitude is studied. On the y-axis, the modulus of the
difference between the value of the likelihood at the x-
value and the value of the likelihood at the injected value
is plotted. If the true injected value is a global maximum
for the likelihood, the plot should drop down to −∞ for
A0 equal to the true value. Also in this case, the plot
shows the expected behaviour.

In fig.19, two bi-dimensional studies of the likelihood
as a surface, in the first case function of right ascension

α and declination δ and in the second one function of
the two lambdas hyper-parameters are shown. In the
first case, the likelihood is very complicated, with sev-
eral local maxima and irregularities. This is due to the
fringe effect, relevant for the waveform used: changing
the sky location shifts the sine-Gaussians in the N detec-
tors with respect to one another. For high frequency (f0)
signals, it is sufficient a small difference in time (whenever
f0 ·∆t = 2nπ, for a small integer n) to allow the shifted
sine-Gaussian to well approximate the exact waveform.
This makes the likelihood itself very sensitive to a small
perturbation of the two sky parameters. However, there
is one global maximum, although it can be barely distin-
guished at the center of the plot: it corresponds to the
true injected values for the sky location parameters in
this specific simulation. In the second plot, the surface
is smooth and regular, with a global maximum for the
injected true value.
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