

2-micron, High QE Photodetector for Quantum Metrology

Shalika Singh Mentors: Arai Koji, Rana Adhikari, Aidan Brooks, Christopher Wipf, Duo Tao

- Brief Introduction of Gravitational Waves
- Role of Photodiodes
- Properties of Photodiode
- Photodiode Characterization Experiment
 - Setup
 - Low Noise Electronics
 - Their noise budget
 - Photodiodes under test
 - Comparison between properties
- Future Work

LIGO Gravitational Wave Detector

- Gravitational waves are ripples produced in space time fabric.
- Advanced LIGO has a strain sensitivity of $10^{-24} \sim 10^{-23} / \sqrt{Hz}$
- **Voyager** will have a sensitivity of 4-5 factor above aLIGO.
 - some significant design changes,
 - 200kg, silicon test mass
 - Mirrors coated with amorphous silicon base,
 - Lowering test mass temperature to 123K,
 - Laser of wavelength 2um.

LIGO The role of Photodiode in GW detector

- The photodiode(PD) is used at the dark port of detector.
- It is also used to detect scattering.
- Requirements for Voyager
 - Need of PD sensitive to 2um.
 - Quantum efficiency(QE) >98%.
- Status of Current Photodiodes
 - Current InGaAs photodiodes aren't sensitive to 2um of wavelength.

We are planning to use the photodiode of following materials in Voyager:

- Extended Indium Gallium Arsenide (ex-InGaAs)
- Indium Arsenide Antimonide (InAsSb)
- **Mercury Cadmium Telluride** (MCT or HgCdTe)

Photodiode Mechanism

LIGO Properties of Photodiodes

Quantum Efficiency

- Fraction of incident photons that contribute to the photocurrent.
- Linearity
 - Output Current as a function of incident light.

Dark Current

- Even in the absence of any optical power on the photodiode it can produce a small amount of signal current
- Produced due to lattice mismatch

Dark Noise

• Photodiode dark noise arises due to dark current.

Photodiodes tested

InAsSb (JPL NASA) (500 um)² (750 um)² (1000 um)²

Extended InGaAs (LaserComponents) IG22X2000T9 2 mm in dia.

LIGO Dark Current and Dark Noise

Transimpedance gain: 5.1kOhm / Opamp: OPA140

LIGO

Dark Current Measurement

Note: Room Temp measurements In general, Idark(InAsSb) >> Idark(ex-InGaAs) ex-InGaAs(X8906) showed less dark noise

Dark Noise of ex-InGaAs

The dark noise decreases with decrease in bias voltage.

LIGO-T1900380-v1

LIGO 1

1/f noise comparison (at 10Hz)

The ex-InGaAs has lower 1/f noise at room temperature.

Q.E Measurement Setup

External Q.E.: 77.4% / Internal Q.E.: 83.8% at Vbias = 1V (max)

Work Done

LIGO

Dark current and dark noise measurements at room temp

Summary

• Quantum Efficiency of ex-InGaAs PDs.

• Future Work

- Q.E. vs Vbias
- Q.E., dark current/noise vs temperature
- Test HgCdTe photodiode

Thanks for your time!