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Abstract. The Laser Interferometer Gravitational-Wave Observatory (LIGO)
detectors are complex systems that must be extremely stable to detect
gravitational-wave signals. There are numerous control loops in place to maintain
detector stability, known as “lock,” but, on occasion, the detector loses lock and a
time-consuming lock acquisition process must be undertaken to regain it. These
lock losses reduce the amount of data that LIGO is able to collect. In this project,
we attempt to use machine learning to analyze past lock loss events and determine
the underlying causes so that we can prevent lock losses in the future.

1. Introduction

The Laser Interferometer Gravitational-Wave Observatory (LIGO) operates two
detectors in search of gravitational waves. In each detector, a laser beam is split
into two separate beams which are sent down two perpendicular arms, reflected at the
end of each, and recombined such that there is near perfect destructive interference.
Passing gravitational waves distort spacetime, creating a phase difference between the
two beams and affecting the interference pattern. In order for one of these detectors to
be sensitive enough to detect the minute phase shifts caused by gravitational waves,
it must be in a stable state known as “lock.” In lock, the mirrors are controlled
with extreme precision such that the laser beams resonate in each cavity, building up
power and signal strength, and there is destructive interference [1]. The commissioners
who operate the detectors must work through several stages of the “lock acquisition”
process before an interferometer is stable and data collection can begin.

The loss of lock leads to a significant amount of interferometer downtime as
the commissioners work to realign the different components. While a “lock loss” is
sometimes caused by a known source, such as an earthquake, there are other times
when the reason is less apparent. There are thousands of auxiliary channels that
collect data about the state of the interferometer, and we can potentially use machine
learning techniques to identify features in these channels that signal the approach of
a lock loss.

This project is based on previous work carried out by Jameson Rollins [2]. Rollins
created a dataset of “lock loss” and “no lock loss” times, extracted amplitude spectral
densities (ASDs) from auxiliary channels during those times, reduced the ASD features
to a smaller, more relevant set, and worked with a clustering algorithm that can be
used to group related features. We follow the model used in this work to reach its end
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goal of better understanding lock losses so that we can reduce lost time during future
data collection.

2. Objectives

We hypothesize that there are features in the auxiliary data channels which signal the
approach of lock loss events and which can be linked back to underlying causes of lock
loss. We work to identify these causes and share the information with the detector
commissioners so that they can prevent such events in the future.

In order to do this, we first have to identify the features which are most likely to
predict lock loss. This is crucial, because selection of features that are not correlated to
loss of lock does not yield meaningful results. We then have to implement an optimized
regression algorithm, which needs to be able to reduce a large number of channels to
only those relevant to our analysis. Lastly, we have to implement a clustering algorithm
on the channels and features identified by the regression as contributors to lock loss in
order to group similar features. A successful end product is a set of features that are
proven to precede lock loss events and whose underlying causes can be determined so
that the lock loss problem can be approached at the root.

3. Work Completed

The three main steps in this project are feature extraction, regression with
regularization, and clustering, but we first must compile the dataset. While there
are thousands of auxiliary channels monitoring each of the detectors, we choose to
focus on a reduced set to decrease the amount of data we are working with. We limit
our analysis to the Hanford detector, and we eliminate any channels that are used for
calibration or that are not intended for offline analysis. We identify 276 times at which
a lock loss occurred while the interferometer was in its stable observing mode during
the second LIGO observing run, O2. We generate our initial “positive” data samples,
which have the lock loss label, by selecting 4 seconds of data before each lock loss from
each channel of interest. We end our data samples 0.25 seconds before the identified
lock loss times to allow for the delay between when the interferometer actually loses
lock and when the automated lock acquisition system, Guardian, identifies the change
in state. We then select 1086 4-second “negative” data samples from O2 in which the
detector was observing. These segments are 1000 seconds removed from lock losses
and from each other. The length of the samples is a parameter which can be tuned, so
the analysis may need to be repeated with different lengths and the results compared
to find the optimal value.

To begin our analysis, we look for features in the data samples that we believe to
be indicative of impending lock loss. We cannot perform the regression using the raw
timeseries data in which the amplitude of each channel is stored versus time because
we are using 5385 channels that record up to 16384 data points per second and 1362
total 4-second samples from each channel. This amount of data would cause our
regression to be time-consuming as well as severely under-determined, and the results
would not be meaningful. The solution to this problem is to perform calculations on
the samples that reduce the amount of data points while preserving the characteristics
that allow us to distinguish between positive and negative samples.

The previous work used ASDs, which are calculated by using Fourier analysis to
determine the power in each frequency bin that is present in an auxiliary channel at
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a given time. An unstable oscillation in a control loop, which is a proposed cause of
lock losses, would appear as increasing power over time in a specific bin of the ASDs
for the relevant channels. However, with channel sample rates in the kilohertz range,
in order to significantly reduce the amount of data, the frequency bins must be large,
which may hide interesting features in the data.

We reference the documentation for a feature extraction package called tsfresh [3]
and decide to extract the following features from our timeseries data:

• Difference between maximum and minimum values

• Complexity

• Absolute energy

• Mean value

• Standard deviation

• Variance

• Kurtosis

• Skewness

• Sample entropy

• Approximate entropy

• Absolute sum of changes

• Mean absolute change

The description of each feature except the first can be found in the tsfresh
documentation.

We use HTCondor to parallelize the feature extraction for our dataset. We are
currently working on running the feature extraction. We have removed channels from
our list which were created during the middle of O2 because they cannot be used for
all sample times. We have also removed sample entropy and approximate entropy
from the list of features to extract because they are extremely time-consuming.

4. Work To Be Done

Once the extraction is complete, we will compile the extracted features into a large
matrix. We will use scikit-learn [4], a Python package, to analyze our dataset with
machine learning. We will apply regression to develop a linear model that correlates
the features in our data to the “lock loss” or “clean” labels and identify those features
that contribute most to the model. We will use a regression algorithm that implements
regularization to avoid overfitting the data by using too many channels and features.
For this, we choose the Lasso model (see Appendix A). It builds upon the ordinary
least-squares linear regression, but it reduces the number of features used to create
the model by driving coefficients of features that do not contribute significantly to
zero. The degree to which it does this is controlled by the α parameter, and we have
to carefully select the value of α such that we do not end up with too many or too
few features to analyze. We will use the LassoCV model, which will allow us to test
different values of α in order to determine the optimal number of coefficients to use
in our final model. One of the advantages of using the scikit-learn package for this
task is that we can easily repeat the analysis several times with small tweaks while
inputting a minimal amount of manual labor.
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Once the regression is complete, we will need to evaluate its success. We are
currently researching possible methods of evaluation, such as plotting the receiver
operating characteristic curves. A successful regression will ideally result in a set of
features from specific channels that are highly correlated with the difference between
lock losses and stable times. We will use one of the clustering algorithms available
within scikit-learn to group these data. Previously, the mean shift clustering algorithm
has been used, but we can test several, as with the regression. We will manually
examine the output groups of features to determine whether they are actually similar
or not and to try to identify an underlying cause of each group. A good test of how
well our methods have worked is whether or not we recover features in the seismic
channels that are indicative of the approach of an earthquake-induced lock loss. We
may need to closely study the channels and control loops in the interferometer to
understand how they are related and how specific problems arise. We may also need
to repeat some or all of the steps in the analysis to tune parameters such as the sample
length and the α value.

5. Conclusion

Currently, we are nearly complete with our first round of feature extraction on the
selected dataset. We will soon be able to perform the regression for the first time.
The results of the extraction and regression should allow us to evaluate how well our
approach is working towards the goal of solving the mystery of lock losses.
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Appendix A. Lasso

The main algorithm that we use is Lasso regression. The following description is based
on the previous work [2] and the scikit-learn documentation [4]. We use our extracted
features as our inputs, and they are compiled into an m-by-n matrix X. Each of the
n columns contains features of the same type that were extracted from one channel,
and the total set of columns includes each feature extracted from each channel. Each
of the m rows contains features that were extracted from the same sample time in the
data. We then create an output vector y with m components containing the “lock
loss” and “clean” labels as either “positive” or “negative” values. For a given integer
c where 1 ≤ c ≤ m, the c-th component of y is the label corresponding to the time
from which the c-th row in X was extracted. The regression then solves

Xw = y (A.1)

for a vector of coefficients w that linearly maps X onto y. It is important to note that
we are working with more features and auxiliary channels than there are sample times
in our dataset. Therefore, n is greater than m, and equation A.1 is underdetermined.
This is why we need to implement regularization, which the Lasso algorithm does by
solving equation A.1 such that it minimizes

min
w
||Xw− y||22 + α||w||1 (A.2)

where ||w||1 is the 1-norm of w

||w||1 =
∑
i

|wi| (A.3)

and α is the regularization coefficient responsible for penalizing the coefficients of
those features that do not contribute significantly to the model. A higher α value
drives more coefficients in w to be zero so that the final linear equation depends on
less features.


