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1 Background

Gravitational wave (GW) echoes, the GW reflected from certain structures outside of horizon,
could help us probe Planck scale structure near horizon and therefore is of significant importance
in GW physics [1]. Abedi et al. claimed to have found evidence of echo signal from LIGO data in
2017[2], although the significance turned out to be low[3]. Still, echo signal is a promising candidate
for probing physics beyond General Relativity (GR) and many groups have been trying to search
echo signals from LIGO data based on reliable statistical methods [4, 5, 6, 7].

Previous works about GW echoes are mostly for non-rotating Black Holes(BHs) described by
Schwarzschild metric. For instance, Mark et al. studied echo modes in some Exotic Compact Ob-
ject(ECO) models by solving Teukolsky equation in Schwarzschild limit with reflecting boundary[8].
Du et al. studied energy spectrum of such echoes and showed that they contribute to the stochastic
GW background[9]. One notable point is the instability of central ECO under the energy flux of
incoming GW[10] and we still don’t know if this instability still exists for rotating ECO.

In general situation, astrophysical BHs have both mass and angular momentum and are de-
scribed by Kerr metric. Estimating spin of BHs from LIGO/VIRGO events can also help understand
the formation history of them and their stellar environments[11]. As for echo, some works have been
devoted to searching echo signals from spinning ECOs based on phenomenological model[12, 13].
In order to understand spin effects from echo signal, a well-developed theoretical model for gener-
ating echo templates is needed. Some works in this direction are [14, 15, 12]. Nakano et al. have
constructed a model for echoes from spinning ECOs[15], where the asymptotic behavior of solutions
to Teukolsky equation is used to analyze reflectivity and echo modes, but the reflecting surface is
assumed to be located exactly at the horizon and the incident wave is phenomenological in [15].
We will try to extend [8] to spinning case and develop a more realistic echo model.

2 Objectives

• Provide a more realistic model for echoes from spinning ECOs.

• Generate echo waveform templates and try to incorporate them into current search pipeline.

• Examine stability of spinning ECO against incoming GW.

1



3 Approach

Teukolsky equation for spin-2 field has been a useful tool for computing GW waveforms, on which
our approach is based. We will explain the method to compute Teukolsky-based GW waveform
in Sec 3.1. Effective-One-Body(EOB) formalism[16, 17, 18] has been useful tool to study binary
inspirals. Wenbiao and Zhoujian have applied EOB formalism and Teukolsky-based waveform
to compute GW emission from Extreme-Mass-Ratio Inspiral(EMRI) and Intermediate-Mass-Ratio
Inspiral (IMRI) systems[19, 20]. We briefly explain their code in Sec. ?? and in Sec. 3.3 we show
how to modify the current method to incorporate echo modes and study the stability. Throughout
this article, we will keep the notation consistent with [21].

3.1 Teukolsky Equation

Astrophysical Black Holes with mass M and angular momentum J are described by Kerr metric.
Perturbations of spin-0, spin-1 (e.g. electromagnetic fields) and spin-2 (e.g. Gravitational waves)
fields in Kerr spacetime are governed by Teukolsky equations[22], which is a set of ordinary dif-
ferential equations, separated in Boyer-Lindquist coordinates. For GW, the perturbation field ψ4,
decomposed in frequency domain ψ4 = ρ4

∫ +∞
−∞ dω

∑
lmRlmω(r) −2S

aω
lm(θ)eimφe−iωt with −2S

aω
lm

being spin-weighted spheroidal harmonics, obeys:

∆2 d

dr

(
1

∆

dRlmω
dr

)
− V (r)Rlmω = −Tlmω(r), (1)

where Tlmω(r) is the source term, which will be discussed in Sec. 3.4, and the potential is

V (r) = −K
2 + 4i(r −M)K

∆
+ 8iωr + λ, (2)

where K = (r2 + a2)ω −ma, λ = Elm + a2ω2 − 2amw − 2 and ∆ = r2 − 2Mr + a2.
First, we consider the homogeneous Teukolsky equation where the source term is zero. We can

solve it by analytical expansion, as discussed in [25, 26] and here we don’t go into technical details
of it. The homogeneous Teukolsky equation allows two independent solutions RHlmω, which is purely
ingoing at the horizon, and R∞lmω, which is purely outgoing at infinity:

RHlmω = Bholelmω∆2e−ipr∗, r → r+

RHlmω = Boutlmωr
3eiωr∗ + r−1Binlmωe

−iωr∗, r →∞; (3)

R∞lmω = Dout
lmωe

ipr∗ + ∆2Din
lmωe

−ipr∗, r → r+

R∞lmω = r3D∞lmωe
−iωr∗, r →∞, (4)

where p = ω − ma
2Mr+

, r+ = M +
√
M2 − a2 and r∗ is the tortoise coordinate related to r by

dr ∗ /dr = (r2 + a2)/∆
Then, using the homogeneous solutions and proper boundary conditions, we can construct the

solution to radial Teukolsky equation with source term. By imposing BH boundary condition, i.e.
wave being purely outgoing at infinity and purely ingoing at horizon, the radial function is:

RBHlmω(r) =
R∞lmω(r)

2iωBinlmωD
∞
lmω

∫ r

r+

dr′
RHlmω(r′)Tlmω(r′)

∆(r′)2
+

RHlmω(r)

2iωBinlmωD
∞
lmω

∫ ∞
r

dr′
R∞lmω(r′)Tlmω(r′)

∆(r′)2

(5)
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The asymptotic behavior of this solution near horizon and infinity is:

RBHlmω(r →∞) = ZHlmωr
3eiωr∗, (6)

RBHlmω(r → r+) = Z∞lmω∆2e−ipr∗. (7)

By taking the limit at r →∞ and r → r+ of the solution (Eq. 5), with the asymptotic behavior

of homogeneous solutions (Eq. 3, 4), one can find the amplitudes ZH,∞lmω :

ZHlmω =
1

2iωBinlmω

∫ ∞
r+

dr′
RHlmω(r′)Tlmω(r′)

∆(r′)2
(8)

Z∞lmω =
Bholelmω

2iωBinlmωD
∞
lmω

∫ ∞
r+

dr′
R∞lmω(r′)Tlmω(r′)

∆(r′)2
(9)

Finally, from the relation ψ4(r → ∞) → 1
2 (ḧ+ − iḧ×), decompose ψ4 in frequency domain as

we previously introduced and plug in the behavior of radial function at infinity (Eq. 6). The
gravitational waveform, observed from distance R, latitude angle Θ and azimuthal angle Φ, is given
by:

hBH+ (R,Θ,Φ, t)− ihBH× (R,Θ,Φ, t) =
2

R

∑
lm

∫ +∞

−∞
dω

1

ω2
ZHlmω −2S

aω
lm(Θ)ei(mΦ−ω[t−r∗]). (10)

3.2 Sasaki-Nakamura Equation

The Teukolsky potential is long-ranged, making it hard to numerically extract certain param-
eters in homogeneous solution, e.g. Bin, which is overwhelmed by Bout at infinity. Sasaki et al.
transformed the radial equation so that the potential is short-ranged and the equation become nu-
merical computable[23]. Moreover, asymptotic behavior of solutions to Sasaki-Nakamura equations
is purely sinuous, making it easier to generalize to echo construction.

Transformation between Teukolsky function Rlmω and Sasaki-Nakamura function Xlmω is given
by[21]:

Rlmω =
1

η

[(
α+

β,r
∆

)
∆Xlmω√
r2 + a2

− β

∆

d

dr

∆Xlmω√
r2 + a2

]
. (11)

Taking Eq. (11) into Teukolsky equation, one can find the equation for Sasaki-Nakamura func-
tion Xlmω:

d2Xlmω

dr∗2
− F (r)

dXlmω

dr∗
− U(r)Xlmω = 0. (12)

The functions η, α, β and the potentials F (r), U(r) can be found in [21]. The reverse transfor-
mation can be found in [24].

The Sasaki-Nakamura equation admits two homogeneous solution having the purely sinuous
asymptotic behavior due to the short-rangeness of potential U(r):

XH
lmω = Aholelmωe

−ipr∗, r → r+,

XH
lmω = Aout

lmωe
iωr∗ +Ain

lmωe
−iωr∗, r →∞;

(13)
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and
X∞lmω = Cout

lmωe
ipr∗ + C in

lmωe
−ipr∗, r → r+,

X∞lmω = C∞lmωe
iωr∗, r →∞,

(14)

Taking the asymptotic behavior into the transformation (Eq. 11) and comparing with asymp-
totic behavior of Teukolsky function (Eq. 3,4). One finds the relation between asymptotic ampli-
tudes of Sasaki-Nakamura functions and Teukolsky functions [24]:

Binlmω = − 1

4ω2
Ainlmω

Boutlmω = −4ω2

c0
Aoutlmω

Bholelmω = − 1

dlmω
Aholelmω

(15)

Din
lmω =− 1

dlmω
Cinlmω

Dout
lmω =−

4p
√

2Mr+(2Mr+p+ i
√
M2 − a2)

η(r+)
Coutlmω

D∞lmω =− 4ω2

c0
C∞lmω

(16)

where the coefficients c0 and dlmω can be found in [21]
The homogeneous solution X∞ can be regarded as a incident wave coming out near the horizon

with amplitude Coutlmω scattered off the Sasaki-Nakamura potential. We can thus define the reflection
and transmission factors RBH and TBH :

TBH =
C∞

Cout
, RBH =

Cin

Cout
(17)

3.3 Constructing echo modes

In this section, we construct echo waveforms analytically and the only phenomenological quan-
tity is the reflectivity R̃ near horizon. First, the method established in [8] will be extended to
Teukolsky equations with non-vanishing BH spin. By interpreting a Planck scale potential barrier
near horizon to a frequency dependent reflectivity and matching the solution of Teukolsky equation
to the reflecting boundary condition, we’ll find a procedure to generate echo modes for spinning
ECO.

Since the Sasaki-Nakamura equation has short ranged potential and therefore purely sinuous
waves near horizon and at infinity, it’s easier to impose reflecting boundary for Sasaki-Nakamura
equation. On the other hand, we have the method to semi-analytically solve Teukolsky equation
and extract waveform from radial Teukolsky function in hand. Therefore, we impose the reflecting
boundary condition in Sasaki-Nakamura equation and after getting the relevant coefficient describ-
ing additional term induced by reflecting boundary, we transform the Sasaki-Nakamura function
into Teukolsky function. Then we can utilize the results of BH waveform based on Teukolsky
equation to establish echo waveform.

We consider the combination of XH and X∞

Xref
lmω = KX∞lmω +XH

lmω (18)
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which satisfies the reflecting boundary near horizon r0 = r+ + ε with reflectivity R̃

Xref ∝ e−ip(r∗−r0∗) + R̃eip(r∗−r0∗) r∗ → r0∗ (19)

Taking the asymptotic behavior of XH,∞
lmω (Eq. 13, 14) into the above boundary condition, one

can find K:

K =
Ahole

C∞
R̃e−2ipr0∗TBH

1− R̃e−2ipr0∗RBH
with TBH =

C∞

Cout
, RBH =

Cin

Cout
(20)

The corresponding solution to homogeneous Teukolsky equation by relation (11) is Rref = KR∞+
RH . Therefore, with R∞ satisfying ECO boundary condition at infinity and Rref satisfying ECO
boundary at surface, the Green function of Teukolsky with ECO boundary is:

gECO(r, r′) =
R∞(max{r, r′})Rref (min{r, r′})

2iωBinD∞
= gBH +KR

∞(r)R∞(r′)

2iωBinD∞
(21)

Then the ECO solution will be the BH solution RBH in Eq. 5 with an additional echo contri-
bution:

RECO = RBH +K R∞(r)

2iωBinD∞

∫ +∞

−∞

R∞(r′)T (r′)

∆(r′)
dr′ (22)

Near ECO surface the solution approaches:

RECO → Z∞

Bhole
(RH(r) +KR∞(r)) r → r0 (23)

The corresponding Sasaki-Nakamura function satisfies the reflecting boundary:

XECO ∝ XH +KX∞ ∝ e−ip(r∗−r0∗) + R̃eip(r∗−r0∗) r∗ → r0∗ (24)

At infinity, the solution is purely outgoing:

RECO(r →∞) = (ZH +K D∞

Bhole
Z∞)r3eiωr∗ (25)

which gives the GW waveform with echoes

hECO+ (R,Θ,Φ, t)−ihECO× (R,Θ,Φ, t) =

2

R

∑
lm

∫ +∞

−∞
dω

1

ω2
(ZHlmω +Klmω

D∞lmω
Bholelmω

Z∞lmω)−2S
aω
lm(Θ)ei(mΦ−ω[t−r∗]).

(26)

Then, we will incorporate this method into our existing code to numerically generate echo
waveforms. We expect that the main structure of current code will remain, with some additional
subroutines computing the additional term in Eq. 22, the echo contribution to ZHlmω and thus the
full waveform seen by a distant observer.

Note that the homogeneous solutions are determined up to two constants, i.e. we can transform
XH → PXH , X∞ → QX∞ (and consequently RH → PRH , R∞ → QR∞) with P,Q being two
arbitrary complex number, the final solution with source term (Eq. 5,22) and the waveform (Eq.
10,26) does not change. So we have the freedom to choose Ahole = 1, C∞ = 1
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3.4 Source Term

Following the formalism of [21], the source term in Teukolsky equation induced by a particle
with trajectory xµ(τ) = (t(τ), r(τ), θ(τ), φ(τ)) is given by [29]:

Tlmω(r′) =

∫ ∞
−∞

dtei[ωt−mφ(t)]∆(r′)2{[Ann0 +Anm̄0 +Am̄m̄0]δ(r′ − r(t))

∂r′([Anm̄1 +Am̄m̄1]δ(r′ − r(t))) + ∂2
r′ [Am̄m̄2δ(r

′ − r(t))]}
(27)

where Aabk (a, b = n, m̄, k = 0, 1, 2) are related to r(t) and θ(t) and can be found in Eq. (4.40) of
[21]. Although the original article is considering circular orbits, the derivation about source term
(Eq.(4.26) to Eq.(4.41) of [21]) can be easily generalized to generic trajectory by replacing r0 with

r(t). Then the amplitudes ZH,∞lmω are given by:

ZHlmω =
1

2iωBinlmω

∫ +∞

−∞
dtei[ωt−mφ]{RHlmω(r(t))[Ann0 +Anm̄0 +Am̄m̄0]

−dR
H
lmω

dr
|r(t)[Anm̄1 +Am̄m̄1] +

d2RHlmω
dr2

|r(t)Am̄m̄2}
(28)

Z∞lmω =
Bholelmω

2iωD∞lmωB
in
lmω

∫ +∞

−∞
dtei[ωt−mφ]{R∞lmω(r(t))[Ann0 +Anm̄0 +Am̄m̄0]

−dR
∞
lmω

dr
|r(t)[Anm̄1 +Am̄m̄1] +

d2R∞lmω
dr2

|r(t)Am̄m̄2}
(29)

For ringdown signal, we consider the part of trajectory from particle entering into ISCO at tISCO

to particle plunging into horizon at tplunge. Therefore, the energy-momentum tensor, and thus the
integrand of Eq. (28,29), is only non-zero between tISCO < t < tplunge.

3.5 Energy Flux

The energy flux at infinity can be derived from the energy carried by the gravitational wave.
The energy endowed by “+” and “×” mode of Eq. (26) is:

(
dE

dAdt
)|R→∞ =

1

16π
< (∂th+)2 + (∂th×)2 > (30)

Take Eq. (26) into it and integrate over a sphere. The energy flux at infinity will be:

(
dE

dt
)|R→∞ =

∑
l,m

∫ +∞

−∞

|ZHlmω +Klmω D
∞
lmω

Bhole
lmω

Z∞lmω|2

4πω2
dω (31)

To estimate the energy flux near horizon we first look at the behavior of the radial function
Rlmω near ECO surface and BH horizon. At ECO surface, from Eq. (23):

RECO → Z∞

Bhole
(RH(r) +KR∞(r)) = Z∞(1 +K Din

Bhole
)∆2e−ipr∗ + Z∞K D

out

Bhole
eipr∗ r → r0 (32)

Assuming the ECO surface has amplitude transmissivity T̃ , we have at horizon:

RECO → T̃ Z∞(1 +K Din

Bhole
)∆2e−ipr∗ r → r+ (33)
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The energy flux endowed by this ingoing wave is:

(
dE

dt
)|R→r+ =

∑
l,m

∫ +∞

−∞
αlmω

|T̃ Z∞(1 +K Din

Bhole )|2

4πω2
dω (34)

where αlmω can be found in Eq. (4.17) of [21].

4 Stability Problem

4.1 Superradiance

The superradiance for different kinds of perturbation fields around Kerr-like spacetime has been
studied in [31, 32, 33, 15]. The manifestation of superradiance includes reflectivity larger than
unity for the scattering process [32, 33, 15] and exponentially increasing amplitudes in Quasi-
Normal Modes [31], when the frequency of perturbation field drops below a critical value. The
superradiance is expected to be quenched when the reflectivity of ECO surface is below unity [31].

We computeRBH and TBH by numerical integration of Sasaki-Nakamura equation and Richard-
son extrapolation to horizon. The reflection and transmission coefficients in frequency domain for
different spin are shown in Fig. 1
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Figure 1: Black Hole reflectivity RBH and transmissivity TBH for l=m=2 modes.

Note that RBH and TBH do not represent the reflection and transmission of energy. Here, as a
sanity check, we consider the energy relation as stated in Nakano et. al[15]. In their work, a relation
that’s quadratic in the asymptotic amplitudes shows:

|D∞lmω|2 =
ω3|Dout

lmω|2

p(2Mr+)3(p2 + 4ε2N )
− 256ω3(2Mr+)5p(p2 + 4ε2N )(k2 + 16ε2N )

|C|2
|Din

lmω|2

|C|2 =((λ+ 2)2 + 4maω − 4a2ω2)(λ2 + 36amω − 36a2ω2)

+ 48(2λ+ 3)(2a2ω2 − amω) + 144ω2(M2 − a2)

(35)
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where εN =
√
M2−a2
4Mr+

. The notation is different from the original paper[15]. To clarify, the sym-

bols in Nakano’s paper, Q, k, Zout, Zup, Zdown, ε, corresponds to our λ+ 2, p,D∞lmω, D
in
lmω, D

out
lmω, εN ,

respectively.
Since energy is quadratic in amplitude, Eq.(35) should represent energy balance relation. There-

fore, we find energy reflectivity RE and transmissivity TE as (Eq. (11) of [15]):

R2
E =

256p2(2Mr+)8(p2 + 4ε2N )2(k2 + 16ε2N )

|C|2
|Din

lmω|2

|Dout
lmω|2

(36)

T 2
E =

p(2Mr+)3(p2 + 4ε2N )

ω3

|D∞lmω|2

|Dout
lmω|2

(37)
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Figure 2: Energy reflectivity RE and transmissivity TE for l=m=2 modes.

As shown in Fig.2, the energy reflectivity and transmissivity are well-behaved, i.e. transmissivity
approaches 1 as frequency increases, reflectivity goes above unity below superradiance frequency
and approaches 1 as frequency approaches 0.

4.2 Hoop Conjecture

The incoming energy flux is given by Eq.(??).
The spacetime with an expanding horizon is given by Carmeli metric [28].
...

5 GW from ECO

5.1 Individual Echoes from Ringdown Signal

The additional reflection contribution K in Eq.(20) can be understood as a sum of a series of
echoes.

...
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5.2 Interference between Continuous Signal and Subsequent Echoes

For continuous signals like EMRI, the reflected GW will interfere with the main wave. Depending
on the phase, the additional amplitude in Eq.(25) can cause enhancement or cancellation of the
GW signal in Eq.(26).

...
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A Derivation of Eq. (15)(16)

The transformation between R functions and X functions is:

R =
1

η

[(
α+

β,r
∆

)
∆X√
r2 + a2

− β

∆

d

dr

∆X√
r2 + a2

]
.

=
1

η

[(
α+

β,r
∆

)
∆X√
r2 + a2

− β√
r2 + a2

d

dr
X − β

∆

r3 + a2r − 2Ma2

(r2 + a2)3/2
X

] (38)

A.1 relation at infinity

As r →∞:

XH → Aouteiωr∗ +Aine−iωr∗ (39)

dXH

dr
=
dr∗
dr

dXH

dr∗
→ (

r2 + a2

∆
)(iωAouteiωr∗ − iωAine−iωr∗) (40)

Using the relation between R and X:

RH →1

η

[(
α+

β,r
∆

)
∆√

r2 + a2
− β
√
r2 + a2

∆
iω − β

∆

r3 + a2r − 2Ma2

(r2 + a2)3/2

]
Aouteiωr∗

+
1

η

[(
α+

β,r
∆

)
∆√

r2 + a2
+
β
√
r2 + a2

∆
iω − β

∆

r3 + a2r − 2Ma2

(r2 + a2)3/2

]
Aine−iωr∗

(41)

Comparing with equation (3), RH → Boutr3eiωr∗ + r−1Bine−iωr∗, we have the relation:

Bout = lim
r→∞
{ 1

r3η

[(
α+

β,r
∆

)
∆√

r2 + a2
− β
√
r2 + a2

∆
iω − β

∆

r3 + a2r − 2Ma2

(r2 + a2)3/2

]
}Aout (42)

Bin = lim
r→∞
{ r
η

[(
α+

β,r
∆

)
∆√

r2 + a2
+
β
√
r2 + a2

∆
iω − β

∆

r3 + a2r − 2Ma2

(r2 + a2)3/2

]
}Ain (43)
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The first limit is easy to evaluate once we notice that, as r → ∞, η → c0 + O(1/r), ∆ →
r2 + O(r), β → −2iωr4 + O(r3), α → −2ω2r2 + O(r), where c0 can be found in [21]. Replacing

them into the first equation, we get Bout = − 4ω2

c0
Aout.

The second is a little tricky since some nice cancellation should happen so that only O(1/r)
term remains in the bracket.

A.2 relation at horizon

As r → r+:

X∞ → Couteipr∗ + Cine−ipr∗ (44)

dXH

dr
=
dr∗
dr

dXH

dr∗
→ (

r2 + a2

∆
)(ipCouteipr∗ − ipCine−ipr∗) (45)

Using the relation between R and X:

R∞ →1

η

[(
α+

β,r
∆

)
∆√

r2 + a2
− β
√
r2 + a2

∆
ip− β

∆

r3 + a2r − 2Ma2

(r2 + a2)3/2

]
Couteipr∗

+
1

η

[(
α+

β,r
∆

)
∆√

r2 + a2
+
β
√
r2 + a2

∆
ip− β

∆

r3 + a2r − 2Ma2

(r2 + a2)3/2

]
Cine−ipr∗

(46)

Comparing with equation (4), R∞ → Douteipr∗ + ∆2Dine−ipr∗, we have the relation:

Dout = lim
r→r+

{1

η

[(
α+

β,r
∆

)
∆√

r2 + a2
− β
√
r2 + a2

∆
ip− β

∆

r3 + a2r − 2Ma2

(r2 + a2)3/2

]
}Cout (47)

Din = lim
r→r+

{ 1

∆2η

[(
α+

β,r
∆

)
∆√

r2 + a2
+
β
√
r2 + a2

∆
ip− β

∆

r3 + a2r − 2Ma2

(r2 + a2)3/2

]
}Cin (48)

When r → r+, ∆→ 0. Evaluation of the first limit is direct, by noting that β → 2(−iK + r −
M)∆ +O(∆2), α→ −2iK(−iK + r −M)/∆ +O(1). The result is:

Dout = −
4p
√

2Mr+(2Mr+p+ i
√
M2 − a2)

η(r+)
Cout (49)

Again the second limit needs some nice cancellation so that only O(∆2) terms survives in the
bracket.

B Derivation of Eq. (??) (??)
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