Observing and Modeling Ultracompact Binaries Detectable by LISA

Olivia Cooper Smith College 2020 LIGO SURF 2019 Mentors: Michael Coughlin, Shreya Anand

Outline

- Multi-messenger astrophysics
- LISA

- Ultracompact binaries
 - » White dwarf binaries
 - » Low-mass X-ray binaries
- Simulations
- Observations
- Future work

Multi-messenger Astrophysics

LIGO

Olivia Cooper, LIGO SURF 2019

Multi-messenger Astrophysics

LIGO

LIGO

LISA

- 3 test masses, 6 laser links
- 2.5 million km arms
- Earth trailing heliocentric orbit

Olivia Cooper, LIGO SURF 2019

5

LISA

Form F0900042-v1

6

DCC: <u>T1900360-v1</u>

Olivia Cooper, LIGO SURF 2019

Figure credit: Burdge+ 2019

Olivia Cooper, LIGO SURF 2019

Figure credit: Burdge+ 2019

Low-mass X-ray Binaries

DCC: <u>T1900360-v1</u>

Olivia Cooper, LIGO SURF 2019

Image credit: Caltech (L); Dana Berry/NASA Goddard Space Flight Center (R) 9

DCC: <u>T1900360-v1</u>

LIGO

Olivia Cooper, LIGO SURF 2019

DCC: T1900360-v1

LIGO

Olivia Cooper, LIGO SURF 2019

Orbital Decay

 Objects in binary orbit give off GW

LIGO

As energy is lost, period decreases

$$\dot{P} = \frac{-96\pi}{5c^5} (\pi G \mathcal{M} f_{gw})^{\frac{5}{3}}$$

Animation credit: NASA/Dana Berry, Sky Works Digital

Olivia Cooper, LIGO SURF 2019

12

Simulated Light Curves

• Construct eclipsing light curve given binary parameters

DCC: T1900360-v1

Animation credit: space.fm

Olivia Cooper, LIGO SURF 2019

Simulated Light Curves

- Interpolate light curve over time given decay rate
- Eclipse mid points shift over time
- White dwarf binary
 -10⁻¹¹ s/s

LIGO

Simulated Light Curves

- Interpolate light curve over time given decay rate
- Eclipse mid points shift over time
- White dwarf binary » -10⁻¹¹ s/s

DCC: T1900360-v1

Olivia Cooper, LIGO SURF 2019

Galactic Binary Population

LIGO

Gravitational	waveform
catalog	

 Light curve corresponding to each binary system

Orbital Decay Light Curves

- Period search simulated photometry
- Constrain range of inclination and period we can detect

Quantify range of white dwarf binaries we expect to detect in EM and GW

DCC: <u>T1900360-v1</u>

LIGO

Olivia Cooper, LIGO SURF 2019

EM Follow-up

Olivia Cooper, LIGO SURF 2019

Olivia Cooper, LIGO SURF 2019

Spectroscopy

Spectroscopy

Figure credit: Burdge+ 2019 (arXiv: 1907.11291)

DCC: T1900360-v1

Olivia Cooper, LIGO SURF 2019

22

KPED Light Curves

Olivia Cooper, LIGO SURF 2019

23

Image credit: Burdge+ 2019

DCC: <u>T1900360-v1</u>

LIGO

Olivia Cooper, LIGO SURF 2019

24

Conclusions and Next Steps

- Multi-messenger astronomy allows us to further constrain a source's astrophysical parameters
- Ultracompact binaries are needed to verify and calibrate LISA
 - » Simulate Galactic Binary population waveforms and photometry
 - » Follow up of wide field sky surveys with high cadence photometry and spectroscopy

Acknowledgements

- Michael Coughlin
- Shreya Anand
- Kevin Burdge
- Kishalay De
- Alan Weinstein
- LIGO Lab
- LIGO SURF
- Caltech SFP

Additional Slides

TSpec

- Palomar 200" Hale telescope
- Triple Spec NIR spectrograph
 » 1.0 2.4 µm
- 2 hours of observing
- 1 × 30 arcsecond slit

KPED

- WIYN 2.1 m
- EMCCD

LIGO

- High cadence photometry
- frame rates > 1 Hz (readout time)
- FOV 4.4' x 4.4'

Olivia Cooper, LIGO SURF 2019

• 6.91 min period

LIGO

- GW freq 4.8 mHz
 - » LISA SNR ~ 139 in 4 years
- Surface brightness ratio
 0.036
- Quasi-sinusoidal modulation
 - » primary star irradiates one side of secondary
- $\dot{P} = -2.365^{*}10^{-11} \text{ s/s}$

DCC: <u>T1900360-v1</u>

Olivia Cooper, LIGO SURF 2019

Image credit: Caltech/IPAC

Ellipsoidal Modulation

Olivia Cooper, LIGO SURF 2019

LIGO

The Variable Sky

Image credit: Palaversa+ 2013 (**arXiv:1308.0357**)

32

Olivia Cooper, LIGO SURF 2019

Pulsating White Dwarfs

Animation credit: space.fm

DCC: <u>T1900360-v1</u>

Olivia Cooper, LIGO SURF 2019

33

More ZTF Light Curves

DCC: T1900360-v1

Olivia Cooper, LIGO SURF 2019 Image credit: Ivan L. 34 Andronov Form F0900042-v1

ellc

LIGO

Olivia Cooper, LIGO SURF 2019

Period Search

• Lomb-Scargle

LIGO

» Fourier power versus frequency or period

Conditional Entropy

- » 2D histogram, axes are time and magnitude
- » Modulate over time bin, minimize scatter

DCC: T1900360-v1

Olivia Cooper, LIGO SURF 2019

Period Search

• Lomb-Scargle

LIGO

» Fourier power versus frequency or period

Conditional Entropy

» 2D histogram, axes are time and magnitude

» Modulate over time bin, minimize scatter

Figure 1. This shows the light curve of a typical type AB RR Lyrae from CRTS (Drake et al. 2013) (a) folded at the trial period which minimizes the entropy (b) and conditional entropy (c).

Olivia Cooper, LIGO SURF 2019

Figure credit: Graham+ 2013 (arXiv: 1306.6664) 37 LIGO

Known Verification Binaries

Table 1. Physical properties of the known verification binaries. Masses and inclination angles in brackets are assumed and based on evolutionary stage and mass ratio estimations

Source	$l_{ m Gal}$ (deg)	$b_{ m Gal}$ (deg)	Orbital period (sec)	m_1 (M _{\odot})	m_2 (M _{\odot})	ι (deg)	Refs.
AM CVn type	, _,	,				,	
HM Cnc	206.9246	23.3952	321.529	0.55	0.27	≈38	1,2
V407 Vul	57.7281	6.4006	569.395	$[0.8 \pm 0.1]$	$[0.177 \pm 0.071]$	[60]	3
ES Cet	168.9684	-65.8632	620.21	$[0.8 \pm 0.1]$	$[0.161 \pm 0.064]$	[60]	4
SDSS J135154.46–064309.0	328.5021	53.1240	943.84	$[0.8 \pm 0.1]$	$[0.100 \pm 0.040]$	[60]	5
AM CVn	140.2343	78.9382	1028.73	0.68 ± 0.06	0.125 ± 0.012	43 ± 2	6,7
SDSS J190817.07 + 394036.4	70.6664	13.9349	1085.7	$[0.8 \pm 0.1]$	$[0.085 \pm 0.034]$	10 - 20	8,9
HP Lib	352.0561	32.5467	1102.70	0.49-0.80	0.048-0.088	26 - 34	10, 11
PTF1 J191905.19+481506.2	79.5945	15.5977	1347.35	$[0.8 \pm 0.1]$	$[0.066 \pm 0.026]$	[60]	12
CXOGBS J175107.6–294037	359.9849	-1.4108	1375.0	$[0.8 \pm 0.1]$	$[0.064 \pm 0.026]$	[60]	13
CR Boo	340.9671	66.4884	1471.3	0.67 - 1.10	0.044 - 0.088	30	$11,\!14$
V803 Cen	309.3671	20.7262	1596.4	0.78 - 1.17	0.059 - 0.109	12 - 15	$11,\!15$
Detached white dwarfs							
SDSS J065133.34+284423.4	186.9277	12.6886	765.5	0.247 ± 0.015	0.49 ± 0.02	$86.9^{+1.6}_{-1.0}$	16, 17
SDSS J093506.92+441107.0	176.0796	47.3776	1188.0	0.312 ± 0.019	0.75 ± 0.24	[60]	$18,\!19$
SDSS J163030.58+423305.7	67.0760	43.3604	2389.8	0.298 ± 0.019	0.76 ± 0.24	[60]	18,20
SDSS J092345.59 $+302805.0$	195.8199	44.7754	3883.7	0.275 ± 0.015	0.76 ± 0.23	[60]	$18,\!21$
Hot subdwarf binaries							
CD-30°11223	322.4875	28.9379	4231.8	0.54 ± 0.02	0.79 ± 0.01	82.9 ± 0.4	22

[1]Strohmayer (2005), [2]Roelofs et al. (2010), [3]Ramsay et al. (2002), [4]Espaillat et al. (2005), [5]Green et al. (2018a), [6]Skillman et al. (1999), [7]Roelofs et al. (2006), [8]Fontaine et al. (2011), [9]Kupfer et al. (2015), [10]Patterson et al. (2002), [11]Roelofs et al. (2007c), [12]Levitan et al. (2014), [13]Wevers et al. (2016), [14]Provencal et al. (1997), [15]Roelofs et al. (2007a), [16]Brown et al. (2011), [17]Hermes et al. (2012), [18]Brown et al. (2016c), [19]Kilic et al. (2014), [20]Kilic et al. (2011), [21](Brown et al. 2010), [22]Geier et al. (2013)

Olivia Cooper, LIGO SURF 2019

Table: Kupfer+ 2015 (arXiv: 1805.00482v2) 38

AM CVn

- Cataclysmic variable
- Hot blue binary system
- White dwarf accretes H-poor material from companion

LIGO

Olivia Cooper, LIGO SURF 2019

Image credit: NASA

39

HR Diagram

 Stellar evolution dependent on initial mass

DCC: T1900360-v1

LIGO

Olivia Cooper, LIGO SURF 2019

Image credit: ESO

Stellar Remnants

DCC: T1900360-v1

Olivia Cooper, LIGO SURF 2019

Image credit: R.N. Bailey

41