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Thus far, the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) and Ad-
vanced Virgo have detected gravitational waves (GWs), or ripples in the curvature of spacetime, from
dozens of binary black hole (BBH) and binary neutron star mergers. In order to detect these GWs,
aLIGO data are optimally searched against a bank of model waveform templates well-described by
General Relativity (GR). These searches only include waveforms for the dominant ` = 2,m = 2
mode, neglecting higher order modes (HOMs) which carry important information about the source
and its radiation. Furthermore, HOMs are lower in amplitude than the dominant mode, and tend to
lie outside of aLIGO’s sensitive frequency band for low-mass systems, making their detection very
unlikely. Constrained by this strain sensitivity, we use waveforms produced by numerical relativity
simulations to assess the capabilities of aLIGO for detecting HOMs, thus paving the way for a
powerful test of GR in the strong-field highly dynamical regime. To determine the range of BBH
mass, spin, and orbital orientations which optimizes the likelihood of detecting HOM, we therefore
calculate the overlap integral between templates with and without HOMs, as well as the maximum
effective luminosity distance to the source. Within a range of assumptions discussed in this paper,
we find the following results: the total mass and mass ratio of the merger should be as large as
possible, and the aligned spin should be as large and positive as possible. We find the relationship
with inclination angle to be more complicated, as it depends on which combination of HOMs are
most dominant at a certain mass ratio.

Usage: Caltech SURF Final Report.

I. INTRODUCTION

Gravitational waves (GWs) are violent ripples of space-
time created by catastrophic events such as merging black
hole binaries, supernovae, and colliding neutron star bi-
naries. Predicted by physicist Albert Einstein in his
Theory of General Relativity (GR) in 1915, Einstein’s
field equations show that such massive accelerating ob-
jects cause distorted waves to travel through the fabric
of spacetime at the speed of light [1, 2].

Despite this breakthrough, GWs were not detected
for another century, until September 14th, 2015, when
the two detectors of the Advanced Laser Interferometer
Gravitational-Wave Observatory (aLIGO) both observed
the first GW signal, GW150914, at 09:50:45.4 UTC [3].
Caused by a binary black hole (BBH) merger, GW150914
was detected during the first observing run (O1) of Ad-
vanced LIGO, which ran from September 12th, 2015 to
January 19th, 2016 [4]. The second observing run (O2)
ran from November 30th, 2016 to August 25th, 2017, and
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on August 1st, 2017, the Advanced Virgo detector joined
O2, allowing for three detectors to simultaneously search
for GWs for the first time in history [5].

aLIGO is the world’s largest, most complex, and most
sensitive interferometer, designed purely for the detec-
tion of these miniscule oscillations in spacetime. Soon, a
global network of detectors will join aLIGO, with three
detectors having already been built in Japan, Italy, and
Germany [6], and a third LIGO detector to be built in
India. Furthermore, the third observing run (O3) of
Advanced LIGO and Virgo began in April 2019, and is
planned to continue throughout the summer of 2019 for
one calender year [7]. As such, gravitational waves are
ushering in a new era of multi-messenger astronomy, in
which astrophysicists have an entirely new way of viewing
and understanding the cosmos.

A. Detection of Gravitational Waves

These developments represent an exciting opportunity
to take advantage of the increased number of detections
and enhanced signal-to-noise ratio (SNR), both of which
will presumably only increase as the years go by. The im-
plications of these improvements are numerous, as GWs
carry not just energy and momentum, but crucial infor-
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FIG. 1. The updated aLIGO design curve, which takes into
account coating thermal noise. In black is the total noise of
the design curve. Figure courtesy of LIGO Scientific Collab-
oration.

mation about the structure of their sources. In partic-
ular, a quasi-circular coalescing compact binary is com-
pletely characterized by fifteen parameters, which include
the mass of each object in the merger, their spins, and
their orbital orientation [8].

During an observing run, aLIGO continually takes in
data, which means that these data must simultaneously
be scrutinized for possible GW events. Events are thus
detected using a technique called matched filtering, which
selects the optimal model waveform for an observed sig-
nal from a collection of waveforms called a template bank.
Because the key parameters which describe a waveform,
such as the amplitude, masses, spins, fiducial reference
time, and orbital phase, are not known before matched
filtering begins, such template banks search through pa-
rameter space to construct thousands of possible gravi-
tational waveforms [9].

Matched filtering is used to search the data for resem-
blance to each template for each time step dt of data. If
a time step has an SNR ' 8, further investigations are
done using Bayesian inference, a process which takes the
model waveform and, given a range of parameters and ex-
pectations for noise, produces posterior distributions on
the input parameters. With this, refined parameters can
be extracted from any signal with a high enough SNR.

B. Higher Order Modes

During matched filtering, current model waveforms are
restricted so that they only include the leading order Y22

mode of the waveform. This is because the full wave-
form, which includes the sum of all modes, depends on
the viewing angle of the observer, something that is not
known at the time of the search. This restriction, while

providing reasonable estimations at a far less computa-
tionally expensive rate, comes at a cost: as both Payne
et al. [10] and Kumar et al. [11] have shown, including
HOMs provides tighter constraints on the source param-
eters than the fundamental ` = 2 mode.

This has three main benefits: including HOMs in our
calculations will allow this parameter estimation proce-
dure to become much more precise, thus greatly further-
ing our understanding of these GW sources. Further-
more, using waveforms with HOMs will likely increase the
similarities between template and data during matched
filtering, thus boosting aLIGO’s detection confidence. Fi-
nally, including HOMs makes it possible to test for their
presence in the signal found in the data, a powerful test
of GR as the theory of strong gravity and GWs.

Unfortunately, there is yet another difficulty in includ-
ing these HOMs in the parameter estimation process.
HOMs are at least half an order of magnitude fainter
than the dominant Y22 mode, and for low-mass systems,
tend to lie outside of the total noise curve in aLIGO’s
sensitivity frequency band, depicted in Figure 1. This
has a two-fold effect in both parameter estimation and
matched filtering: this means that no HOMs have been
detected yet, and will likely not be detected until either
aLIGO’s sensitivies improve or a detector happens to ob-
serve a close-by event with high SNR. As a result, in this
project we aim to determine exactly how high in SNR an
event detection needs to be in order to present statisti-
cally significant evidence for HOMs. In assessing the full
extent of aLIGO’s capabilities for detecting these HOMs,
we will be able to better inform future detections, espe-
cially as aLIGO continues to be upgraded.

We will accomplish this by first computing the ratio
of SNR for templates with and without HOMs, using a
surrogate model for hybridized nonprecessing numerical
relativity waveforms called NRHybSur3dq8 [12]. We will
maximize this ratio for a range of input parameters, al-
lowing us to determine optimal range of source merger
mass, spin, and orbital orientation for detecting HOMs
as constrained by aLIGO’s total noise. Finally, we will
calculate the maximum effective luminosity distance to
the source which will allow aLIGO to detect this differ-
ence in SNR. Because HOMs are predicted by GR but
have not yet been detected, this will also allow us to per-
form unique and powerful tests on GR in the strong-field,
highly dynamical regime.

This paper is organized as follows: in Section II, we
outline the relevant equations used in computing the
strain of a gravitational wave signal. In Section III, we
outline the methods used in answering our research ques-
tion on he detectability of higher order modes. We begin
in Section III A by computing the strain emitted by the
source merger and visualizing the resulting waveform. In
Section III B, we use the antenna response of the detec-
tor in order to calculate the strain that the detector ob-
serves in the time-domain. In Section III C, we prepare
the data so that it is fit for a Fourier Transform into the
frequency domain, which we perform in Section III D.
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We then compare this frequency-domain data to the up-
dated aLIGO design curve pictured in 1, and visualize
the instantaneous peak frequency. Finally we are able to
compute the overlap integral and luminosity distance in
Section III E. In Section IV and V, we show and discuss
the results of our findings.

II. RELEVANT EQUATIONS

In this section, we outline relevant equations for the
dominant Y22 mode of a gravitational waveform during
the inspiral phase. The characteristic dimensionless grav-
itational wave strain amplitude h for a source of mass M
located at a distance r away can be described by Equa-
tion 1. In this notation, Q refers to the quadrupole mo-
ment of the source event, ω is its angular frequency of
orbit, µ is the reduced mass, a is the instantaneous sep-
aration between the two source frame component masses
m1 and m2, and M is the total mass of the merger [13]:

h ∼ G

c4
1

r

d2Q

dt2
,

d2Q

dt2
= −ω2µa2, µ =

m1m2

M
=

m1m2

m1 +m2
(1)

The angular frequency ω can be rewritten in terms of
the orbital period, using Kepler’s third law in Equation
2:

ω = 2πforb =
2π

τorb
, τorb

2 =
4π2

G(m1 +m2)
a3 =

4π2

GM
a3

(2)
Here, fGW = 2forb, where fGW refers to the frequency

of the gravitational wave in the ` = 2,m = 2 mode and
forb is the orbital frequency. Equation 1 can thus be
rewritten as Equation 3, where RS is the Schwarzschild
radius of the source and η is the dimensionless mass fac-
tor:

h ∼ − GM
c2r

Gµ

c2a
∼ −ηRS

2

4ra
(3a)

η =
µ

M
=
m1m2

M2
, RS =

2GM

c2
(3b)

The strain amplitude in Equation 3a can also be writ-
ten in terms of the chirp massM, as defined by Equation
4 below:

h(t) ∼ − 1

c4r
(G5M5π2f2

GW(t))1/3, M = M η3/5 (4)

From these equations, it is clear that GWs can inform
us about many features of the source event. Source pa-
rameters from newly detected GWs can thus be extracted
using Bayesian parameter estimation, a method of ex-
tracting the correct parameters for mathematical models

of physical systems. In contrast to the classical frequen-
tist approach, which chooses a value for some input pa-
rameter θ that maximizes the likelihood of the observed
data, Bayesian parameter estimation holds the observed
evidence as fixed and instead infers a Posterior Density
Function (PDF) for θ [14]. Bayesian inference is a crucial
tool in all of modern science, but is particularly useful in
gravitational wave astronomy, as a black hole can be com-
pletely characterized by its mass and spin vector, and the
gravitational waveform from a BBH by a total of fifteen
parameters [15]. These are composed of the following
intrinsic parameters:

(1) the source frame component BH masses m1 and
m2;

(2) the component BH spin vectors ~χ1 and ~χ2;

as well as the following extrinsic parameters:

(3) the luminosity distance dL;

(4) the source’s sky location ∆Ω, characterized by its
right ascension (RA) and right declination (Dec);

(5) the polar angle ι and polarization angle ψ of the
orientation of the binary orbit with respect to the
line-of-sight of the observer;

(6) the coalescence time tc at which the signal from the
merger reaches the center of the Earth;

(7) the phase of the signal φc at the moment of coales-
cence.

The observer’s viewing angle to the source ι is a key
parameter which differentiates the full waveform from the
restricted waveform. In the latter case, it is an extrinsic
parameter, meaning that only the overall amplitude is
dependent on it. In contrast, for the full waveform with
HOMs, ι becomes an intrinsic parameter upon which the
shape of the waveform is also dependent.

There are a number of other parameters which can
be derived from these fifteen input parameters, including
the final source frame mass Mf , the final spin af , the
radiated energy Erad, the peak luminosity lpeak, the red-
shift z, the chirp massM, and the dimensionless effective
aligned spin χeff. The latter is described by Equation 5,
where L̂N is the orbital angular momentum of the source
event:

χeff =
(m1~χ1 +m2~χ2) · L̂N

M
(5)

III. METHODS

This project requires the use of NRHybSur3dq8, a sur-
rogate model for hybridized nonprecessing numerical rel-
ativity waveforms which includes modes ` = 2 through
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Parameter Value
Approximant NRHybSur3dq8

Timestep 1/4096 s
Distance 100 Mpc

Mass Ratio, q 1
Aligned Spin χ1,z 0.5
Aligned Spin χ2,z 0

Total Mass, M 100 M�
Inclination, ι π

Azimuthal Angle, φ 0
Initial Frequency 10 Hz

TABLE I. Parameters for the individual waveform plotted in
Figures 2 through 7. We have chosen a frequency of 4096 Hz
because it is twice the Nyquist frequency, and χ1,z and χ2,z

are the aligned spin of the larger and smaller components of
the merger, respectively.

FIG. 2. The real strain amplitude of the fundamental Y22

mode for a numerical relativity surrogate waveform is plotted
in orange, along with two of the strongest HOMs. Here it be-
comes clear that HOMs are many orders of magnitude weaker
in amplitude than the dominant mode, due to the fact that
the mass ratio q = 1. Plotted in blue is the full waveform,
or the total sum of all modes, which oscillates in time due to
orbital precession. The merger is given the parameters listed
in Table I.

` = 4, as well as the Y55 mode. In addition to these nu-
merical relativity waveforms, we use the GWpy software
package in Python [16]. Our approach consists of first
visualizing a waveform for just one instance of an event
with and without HOMs, and then generalizing to all
events across many masses, spins and orbital inclinations
in order to find the range of initial parameters that will
maximize aLIGO’s chances of detecting HOMs.

FIG. 3. The real and imaginary portions of the strain are
plotted in blue and orange, respectively. Plotted in green is
what a detector would observe given its antenna response.

A. Visualizing the Waveform

In order to fully investigate HOMs, we must first gain
a physical intuition for how the full waveform behaves
in comparison to the dominant mode, as well as each of
the individual HOMs. We accomplish this through visu-
alizing the waveform generated by a numerical relativity
surrogate model with the parameters listed in Table I. In
this model, the strain is represented as a complex num-
ber with the imaginary part corresponding to the cross
polarization, and the real part to the plus polarization.

Using this convention, in Figure 2, we plot the absolute
value of the strain for the dominant Y22 mode, as well as
two of the strongest HOMs, on a semi-log scale. Although
the phase evolution for (`,m) and (`,−m) is opposite,
because the magnitude of their waveform |hplus+i∗hcross|
is identical, they have been plotted as one line, (`,±m).
This notation is continued throughout the rest of the
paper. This plot thus establishes that there is indeed
a visible and quantitative difference between waveforms
with HOMs and without HOMs, as well as making it
clear just how weak the HOMs can be. In this instance,
the Y3±2 mode is about two orders of magnitude smaller
than the dominant mode, and subsequent HOMs only
decrease further in strength.

B. Accounting for the Antenna Response

In order to make judgements about how much aLIGO
would be able to distinguish between the full waveform
and the dominant mode, we need to take into account
the sky location of the merger relative to the detector.
Using a built-in GWpy function, we are able to obtain the
antenna response functions F+ and F× received by the
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FIG. 4. The windowing function which is applied to the wave-
form data. This is a half-tukey window, meaning that there
is no cut at the end of the time-domain waveform in order to
preserve the data at the time of coalescence.

detector. With Equation 6 below, we can thus obtain the
strain observed by the detector [17].

h(t) = F+(α, δ, ψ, t)h+(t) + F×(α, δ, ψ, t)h×(t) (6)

Here, α refers to the RA, δ to the DEC, ψ to the po-
larization, and t the time of the merger. Because we are
only concerned with relative comparisons between the
two waveforms, we can simply take all of these values to
be zero. The resulting observed signal is plotted in Fig-
ure 3, where the incoming plus and cross polarizations
are plotted in blue and orange, respectively.

C. Refining the Data

Having visualized each of the modes in the time do-
main, we can now plot the HOMs as a function of fre-
quency. First, we must ensure that each of the waveforms
has the same duration of 4 seconds in order to make com-
puting the overlap integral more uniform. To do this, we
simply zeropad waveforms that are too short, and shorten
waveforms that are too long. In the latter case, we cut
data from the beginning of the signal so as not to interfere
with the merger, where HOMs will reveal themselves.

After zeropadding, we must apply a windowing func-
tion to the data before performing a Fourier Transform
in order to prevent nonphysical noise at low frequencies
. 10 Hz and high frequencies & 500 Hz. This is a phe-
nomenon caused by Gibbs noise, whereby the Fourier
Transform of a piece-wise function results in a ringing
artifact at the point of discontinuity. Because the numer-
ical relativity waveforms arbitrarily start at some time
t = 0, the ringing artifact caused by this abrupt start

FIG. 5. The tukey window plotted in Figure 4 applied to the
dominant mode data. The high-frequency Gibbs noise at the
beginning of the waveform in the time-domain is drastically
reduced, as expected.

will become visible as high-frequency noise in the Fourier
Transform. To prevent this, we apply a half-Tukey win-
dow function to the data. As described by Equation 7
below, this is a variation on the classic Tukey window
wherein there is only a cut at the beginning of the time-
domain waveform, rather than at both ends, in order to
target this Gibbs noise. Here, α is a constant which de-
termines the width of each region of the Tukey window,
and n is the number of samples.

w[n] =

{
1
2

[
1 + cos

(
π
(

2n
αN − 1

))]
0 ≤ n < αN

2

1 αN
2 ≤ n ≤ N

(7)

Choosing a width of 40 samples for the first region
in the Tukey window, Figure 4 plots this modified half-
Tukey window as a function of the number of samples,
and Figure 5 plots the Fourier Transform of the domi-
nant mode with and without the Tukey window applied.
The former case clearly has comparatively reduced noise
in the high-frequency regime. It should also be noted
that the decrease in strain at the beginning of this plot is
purely an artifact of the artificial start time of the data,
as in reality a merger would indefinitely increase in am-
plitude for lower frequencies.

D. Examining the Frequency Domain

Using this method of zeropadding and applying a win-
dow function to the data, we can finally Fourier Trans-
form the data into the frequency domain. With this, we
are able to plot the waveform for each mode, the dom-
inant mode, and the sum of all modes against the total
noise, obtained from aLIGO’s updated design curve in
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FIG. 6. The Fourier Transform of the simulation data plotted
in Figure 2. In red is the LIGO design curve, and plotted in
blue is the full waveform summing up all modes associated
with this event. A half-Tukey window, described by Equation
7 has been applied to the data.

FIG. 7. This figure plots the derivative of the phase, or the
instantaneous frequency of each waveform HOM component.
The frequency peaks, as expected, at the time of coalescence.

Figure 1 (LIGO Scientific Collaboration). To do so, we
must multiply the strain of the Fourier Transform plot by
the square root of the frequency along the x-axis in order
to match the units of this design curve. Doing so results
in Figure 6, where the total noise serves as the Ampli-
tude Spectral Density (ASD). It should be noted that
the “humps” visible in the total sum at about 200-400
Hz are due to the underlying HOMs. This shows that
there are clear differences between each of the HOMs,
the dominant mode, and the full waveform. However, it
is important to note that the total noise curve depicted

FIG. 8. An example of a full gravitational waveform signal,
plotted in orange, hidden in noisy data, plotted in blue. This
signal uses a numerical relativity surrogate model waveform
with the input parameters listed in Table I, except for distance
to the source merger, which is 4000 Mpc.

in Figure 1 is an idealization of the noise curve. Noise,
by definition, is random in time, but because the PSD
is an average of many noise realizations, it is constant in
the frequency domain. In order to find the optimal range
of parameters in a more realistic fashion, we will need to
work in the time domain of the noise. An example of
what aLIGO’s data might look like is illustrated in Fig-
ure 8, where the full GW signal is visibly buried in the
noise.

Plotting these three curves together thus reveals the
full range of frequencies in which the detectors can ac-
tually observe HOMs, as well as illustrating the delicate
balance which exists between total merger mass, orbital
orientation, and spin. A lower total mass increases the
frequency of the merger and shifts the strain amplitude
to the right, while the strain amplitude increases as the
merger becomes more face-on. Adding spin will compli-
cate this even further, as a merger might also precess
about its orbital plane, and thus the observer’s viewing
angle with respect to the line of sight [18]. The effect of
this precession on the observed waveform is better seen
edge-on rather than face-on, but strain amplitudes are
highest for face-on systems.

Finally, we plot the waveform’s instantaneous peak fre-
quency as a function of time, as depicted in Figure 7. Be-
cause we have chosen to plot only modes where ` = m we
can easily see that the instantaneous frequency f scales
with m such that f1/f2 = m1/m2. We have also zoomed
in so that the beginning and end of the waveform is not
depicted. In the full waveform, the instantaneous fre-
quency fluctuates very heavily in the beginning due to
noisy data, stabilizes for the most part, and then fluctu-
ates heavily until it reaches peak frequency during coa-

https://dcc.ligo.org/public/0149/T1800044/005/T1800044-v5.pdf
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lescence. This instantaneous frequency is the derivative
of the phase, which monotonically decreases for all modes
aside from the m = 0 mode, which do not oscillate. The
maximum peak frequency for any individual mode de-
pends on the total mass M , which is 100 M� in this plot,
as well as the value of |m|.

E. Calculations

Now that we are able to visualize the waveform with
and without HOMs, we compute the optimal SNR as a
function of total merger mass, mass ratio, spin, and or-
bital orientation angle with respect to the observer’s line
of sight. More quantitatively, we compute the overlap in-
tegral O between the dominant Y22 mode and waveform
with HOMs in order to find where the overlap is small-
est. Because an overlap integral is essentially an inner
product, if h1 and h2 are identical, then O will be equal
to 1. The less they have in common, the smaller O is,
indicating that the full signal with HOMs will be distin-
guishable from the dominant mode. The overlap integral
is shown in Equation 8 below, where h1(f) and h2(f)
are the waveform with and without HOMs, and PSD is
the Power Spectral Density, referring to the square of the
total design noise curve depicted in Figure 1:

PSD = ASD2 (8a)

〈h1|h2〉 =

∫
df
h1(f)h∗2(f)

PSD(f)
(8b)

ĥ1 =
h1√
〈h1|h1〉

(8c)

O =
〈h1|h2〉√

〈h1|h1〉 〈h2|h2〉
=
〈
ĥ1|ĥ2

〉
(8d)

In order to take into account how realistic a detection
is, we calculate the value of the effective luminosity dis-
tance, dL. This number is a measure of the furthest away
a source merger can be in order for aLIGO to detect a
difference in SNR between waveforms with and without
HOMs of at least 1. This relation is described by Equa-
tion 9 below, where ∆SNR scales as 1/dL:

1 ≤ ∆SNR (9)

In order to obtain a value for the luminosity distance
dL in units of MPc, this SNR is computed at a distance
of 1 Mpc, as defined by Equations 10a and 10b below:

SNR1 =
〈h1Mpc|h1〉√
〈h1|h1〉

=
〈
h1Mpc|ĥ1

〉
(10a)

FIG. 9. The overlap integral computed for a range of masses
from 1 to 500 M� and inclination angle θ from 0 to π. The
mass ratio q has been fixed to 1 and the aligned spin of the
larger mass component χ1,z to 0.5.

SNR2 =
〈h1Mpc|h2〉√
〈h2|h2〉

=
〈
h1Mpc|ĥ2

〉
(10b)

Here, SNR1 refers to the SNR signal of the waveform
with HOMs SN̂R1, while SNR2 refers to the SNR signal
of the waveform with just the dominant mode. Following
this definition, as well as the notation used in Equation
8c, each respective SNR can essentially be redefined an
inner product between the signal found in the data at 1
Mpc, h1Mpc, and the model waveform, either h1 or h2.

Using this definition of SNR, the effective luminosity
distance can thus be described by Equations 11a and 11b
below, where SNR1 represents the SNR of the waveform
with HOMs, and SNR2 represents the SNR of the domi-
nant mode waveform.

1 ≤ SNR1

dL
− SNR2

dL
=

1

dL
(SNR1 − SNR2) (11a)

dL ≤ SNR1 − SNR2 (11b)

IV. RESULTS

Now we are able to compute the overlap integral and
luminosity distance for a range of initial parameters. To
do so in a comprehensible and intelligible manner, we re-
duce the parameter space as much as possible by focusing
on four variables exclusively: total mass M , mass ratio
q = m1/m2, where m1 > m2, inclination angle θ, and
the aligned spin component of the larger mass χ1,z. To
compute how the overlap integral behaves in relation to
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FIG. 10. The luminosity distance computed in Mpc for a
range of masses from 1 to 500 M� and inclination angle θ
from 0 to π. The mass ratio q has been fixed to 1 and the
aligned spin of the larger mass component χ1,z to 0.5.

FIG. 11. The overlap integral computed for a range of masses
from 1 to 500 M� and inclination angle θ from 0 to π. The
mass ratio q has been fixed to 3 and the aligned spin of the
larger mass component χ1,z to 0.5.

these four parameters, we fix two of these parameters at
a time and calculate the integral over 10 to 1000 Hz for
a range of values within the other two parameters.

Fixing the mass ratio q and aligned spin χ1,z thus pro-
duces the plots depicted in Figures 9 through 12. Fixing
the total mass M and inclination angle θ instead pro-
duces the plot depicted in Figures 13 and 14. Finally,
fixing the aligned spin χ1,z and inclination angle θ pro-
duces the plots depicted in Figures 15 and 16.

FIG. 12. The luminosity distance computed in Mpc for a
range of masses from 1 to 500 M� and inclination angle θ
from 0 to π. The mass ratio q has been fixed to 3 and the
aligned spin of the larger mass component χ1,z to 0.5.

FIG. 13. The overlap integral computed for a range of mass
ratios q from 1 to 8 and aligned spin of the larger mass com-
ponent χ1,z from -0.99 to 0.99. The total mass M has been
fixed to 500 M� and the inclination angle θ to 0.5π.

V. CONCLUSIONS

The overlap integral informs us as to which HOMs are
statistically significant and which are negligible. Exper-
imenting with different masses and spins visually guides
us to which combination is optimal, allowing us to gain
an intuition for the SNR. The luminosity distance hones
in on this and shows us how close a source merger must be
in order for us to distinguish between a waveform with
and without HOMs. Examining Figures 9 through 15
with this in mind, we can see some relations emerge.

Figure 9 holds q constant at 1 and χ1,z constant at 0.5.
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FIG. 14. The luminosity distance computed in Mpc for a
range of mass ratios q from 1 to 8 and aligned spin of the
larger mass component χ1,z from -0.99 to 0.99. The total
mass M has been fixed to 500 M� and the inclination angle
θ to 0.5π.

FIG. 15. The overlap integral computed for a range of masses
from 1 to 500 M� and mass ratios q from 1 to 8. The aligned
spin of the larger mass component χ1,z has been fixed to 0.5
and the inclination angle θ to 0.5π.

The overlap integral appears to peak for as large a total
mass M as possible. The luminosity distance in Figure
10 appears to tell the same story. However, it is impor-
tant to keep in mind that the assumptions constraining
these conclusions. First of all, the highest mass that is
considered is 500 M�. However, when the total mass ex-
ceeds ≈ 100 M�, aLIGO is unable to detect these events
because BBH mergers of this size do not exist, and even
if they did, they would merge at frequencies below the
sensitive band of the aLIGO detectors. Thus, Figures 9
and 10 inform us that in order to distinguish HOMs, it

FIG. 16. The luminosity distance computed in Mpc for a
range of masses from 1 to 500 M� and mass ratios q from 1
to 8. The aligned spin of the larger mass component χ1,z has
been fixed to 0.5 and the inclination angle θ to 0.5π.

is optimal for the total mass to be as high as possible
within these limits.

However, the relation to the inclination angle θ appears
to be a bit more complicated: in Figure 9, the overlap
integral peaks for an inclination angle θ of ∼ 0.5π, but
in Figure 10, the luminosity distance appears to favor
a slightly higher θ of ∼ 0.7π. Increasing the mass ra-
tio q to 3 reveals a further complication: although the
overlap integral seems to favor the same inclination an-
gle of ∼ 0.5π, as depicted in Figure 11, the luminosity
distance does not. Figure 12 shows that the luminos-
ity distance decreases at that inclination angle, mean-
ing that a source needs to be closer in order to be able
to distinguish HOMs. For a larger luminosity distance,
an inclination angle of ∼ 0.75π and to a lesser extent,
∼ 0.25π, seem to optimize the difference in SNR. Be-
cause this change in optimal inclination angle is spurred
on by the shift in mass ratio, this seems to suggest that
inclination angle has a more complex relationship with
luminosity distance and the overlap integral than does
the total mass. It thus appears that the optimal inclina-
tion angle depends on which HOMs are most dominant at
a certain mass ratio, as unequal mass systems will have
different combinations of HOMs.

The relationship between the overlap integral, luminos-
ity distance, and the aligned spin of the larger mass com-
ponent χ1,z appears to be more straightforward. When
total mass M and inclination angle θ is fixed at 0.5π
in Figures 13 and 14, the overlap integral is lowest, and
the luminosity distance highest, for as large and positive
a spin as possible. The overlap integral and luminosity
distance are similarly optimized for as large a mass ratio
as possible. This can be seen even more clearly in Fig-
ures 15 and 16, which fix the spin χ1,z at 0.5 and the
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inclination angle θ at 0.5π. The preference for high total
mass can also be seen here.

VI. FUTURE WORK

These results shed light into the limit of GR in the
strong-field, highly dynamical regime. It should be noted
that these results do not explore parameter space in its
entirety, and only represent slices of data at fixed parame-
ters. For a more comprehensive review, we would need to
perform a full Bayesian model selection analysis. There is
also room to explore more fully when exactly the overlap
integral begins to increase (and the luminosity distance
decrease) for extremely high mass systems, as eventually
they will fall of the aLIGO updated design curve. We
also need to better understand what parameters the op-

timal inclination angle θ depends on, and why, as the
physics is currently not fully explored. Finally, we would
still need to look into how precessing systems with non-
aligned spins behave, as we only examined non-precessing
BBH mergers.
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