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The LIGO and Virgo detectors have collected gravitational wave
(GW) data from three separate observation runs since 2015,
with the third run presently collecting data. There have been
10 signals from binary black hole mergers and one binary neu-
tron star merger detected from the first two observation runs
and many more from the third run. These detections were all
confirmed due to high confidence in their signal-to-noise ratio
(SNR); however, there are likely many more unconfirmed sig-
nals in the data with lower SNRs. A limitation in the SNR cri-
teria arises when accidental coincidence of “loud” glitches or
other rare noise fluctuations in the LIGO detectors can result
in high SNRs but are not the product of real GWs. We hope to
improve the detection or rejection of sub-threshold events with
lower SNRs by computing the Bayesian coherence ratio (BCR):
the odds between the hypothesis that the data comprise either a
coherent compact-binary-coalescence signal in Gaussian noise
or incoherent instrumental features, using parameter estima-
tion. We present a BCR analysis done on Observation Run 3
(O3) event and background data. Initial results provide confi-
dence that the BCR can distinguish between signal and incoher-
ent noise given appropriate parameters, indicating potential to
improve sub-threshold event detections.
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Introduction / Background. Initial PyCBC [1]. and Gst-
LAL [2]. pipeline searches have flagged potential GW events
as triggers based upon matched-filtering and threshold val-
ues [3], Since LIGO-Virgo’s search sensitivity scales with
binary black hole mergers primary component mass, approx-
imately VM2.1

1 , higher mass mergers have been detected out
to larger distances [4]. However, higher mass binaries merge
more quickly and at lower frequencies than lower mass bi-
naries. This is why high mass binaries are harder to detect
in the current optimal LIGO band of 10 - 1000 Hz, in which
loud glitches tend to fake GWs from higher mass systems.
Current compact-binary-coalescence (CBC) searches do not
adequately differentiate GWs of lower confidence from de-
tector noise. Bayesian model comparison of coherence may
be a way to effectively discriminate whether a marginal trig-
ger, a flagged event just below the SNR from the pipeline
searches, is likely a GW signal or instrumental noise from
the detectors.

Coherence requires that the strain signals in multiple instru-

ments share a phase evolution consistent with a single astro-
physical source, represent a well-described CBC waveform,
and be temporally coincident [5]. Instrumental noise tran-
sients (glitches) are not expected to fully meet these require-
ments, whereas GWs are; therefore, allowing the distinction
to be made.

The data from these signals contain valuable untapped infor-
mation to understanding gravitational waves and the charac-
teristics from merging black hole and neutron star systems
in the distant universe. Being able to collect and analyze the
data from the weaker signals will help fill in the gaps of our
understanding of CBC populations.

Objectives / Methods. I will be working on analyzing
whether the Bayesian coherence ratio (BCR) can be a reli-
able method to improve confidence in the signal of marginal
triggers and/or improve the rejections of inherent noise in the
data in conjunction with current pipeline searches.

BCR is a part of Bayesian inference which is derived from
Bayes’ theorem. This statistical theorem uses pre-existing
information and continually updates predictions to determine
conditional probability. Bayes’ theorem equation is defined
as:
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where A and B are outcomes, P(A|B) is the conditional prob-
ability that outcome A occurs given that outcome B has al-
ready occurred and is known as the posterior. P(B|A) has the
same meaning but with the roles of A and B reversed) and
is known as the likelihood. P(A) and P(B) are the marginal
probabilities of outcome A and outcome B occurring respec-
tively [6]. P(A) is known as the prior or marginal probabil-
ity. The prior is how Bayes’ theorem allows the use of pre-
existing information to determine conditional probability.

We will make use of Bayes’ theorem in the following form:
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The quantity on the left of the equals sign represents the pos-
terior probability distribution for the parameters (collectively
referred to as Θ) of the model describing the data. So, if
we’re trying to estimate the parameter values of a Gaussian
distribution then Θ represents both the mean, µ and the stan-
dard deviation, σ (written mathematically as Θ = µ, σ). We
identify 15 source parameters that govern a CBC: component
masses and spin vectors, right ascention, declination, lumi-
nosity distance, orbital inclination, polarization angle, time
and phase of coalescence. Instead of outcome B, we’ll see
data or y = y1, y2, . . . , yn[6]. In our case, the data are the
time-series of strain values recorded by the detector near the
time identified by the search pipelines as containing a candi-
date signal.

The prior represents the distribution of our belief in the true
parameter values. The posterior is also a distribution that rep-
resents our belief about the parameter values given the ob-
served data. For the case of data d = s+n consisting of a
CBC signal s(Θ) in Gaussian noise n, the likelihood takes
the form of a Gaussian in n= d−s.
The denominator, P(data), is the integral of the numerator
over all possible values of the parameters Θ. It serves to nor-
malize the posterior probability distribution, and is referred
to as the evidence for the model representing the data.

The BCR will be computed using different models: GW sig-
nal, Gaussian noise, and incoherent glitch. To determine
which model is favored in the data, an odds ratio can be used
for model selection. The odds ratio is a way to quantify the
association between two events, or models in our case. For
example, if we computed the odds ratio of the evidence for
the GW signal model to Gaussian noise model:

OddsRatio= p(data|GWsignal)
p(data|GaussianNoise)

If the ratio resulted in a value greater than 1, then the data
favors the GW signal model and indicates the data are likely a
GW signal. If the ratio value is less than 1, then the Gaussian
noise model is favored, indicating the data are likely noise.

For understanding the BCR, I found it useful to understand
this following detailed explanation by Max Isi et al. when
discussing coherence vs incoherence in [5].

The BCR is the odds between the hypothesis that the data
comprise a coherent CBC signal in Gaussian noise (HS), and
the hypothesis that they instead comprise incoherent instru-
mental features (HI ) - meaning each detector has either a
glitch in Gaussian noise (HG), or pure Gaussian noise (HN ).

When using multiple detectors, the BCR equation is written
as:

BCR≡ αZS∏D
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where ZS is the evidence for HS , and ZGi and ZNi are, re-
spectively, the evidences for HG

i and HN
i in the ith detector.

The arbitrary weights α and β parametrize our prior belief
in each model: α = P (HS)/P (HI) and β = P (HG|HI) =
1−P (HN |HI) . These priors will be chosen to minimize
overlap between the signal and noise trigger populations [5].

Evidences (marginalized likelihoods) are the conditional
probability (P) of observing some data (di, for detector i)
given some hypothesis (H), integrated over all of the pa-
rameters associated with that hypothesis (model). For the
coherent-signal hypothesis the evidence is
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The vector ~θ represents a point in the space of param-
eters that describe the CBC signal, such as the com-
ponent masses and spins; the terms in the integrand
are the prior, p(~θ|HS), and the multi-detector likelihood,
p
(
{di}Di=1|~θ,HS

)
=
∏D
i=1 p(di|~θ,HS) . The specific func-

tional form of the single-detector likelihood, p(di|~θ), is de-
rived from the statistical properties of the noise (e.g. a nor-
mal distribution for a Gaussian process). The integral is per-
formed numerically using algorithms like nested sampling.
In our case, the data di are the calibrated Fourier-domain
output of each detector but could generally be any sufficient
statistic produced from it [5].

Because of their inherently unpredictable nature, it is impos-
sible to produce a template that a priori captures all features
of a glitch. Therefore, we define a surrogate glitch hypothe-
sis by the presence of simultaneous, but incoherent, CBC-like
signals in different detectors. Thus, for the ith detector, the
glitch evidence is

(ZGi )≡ P
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where now we allow for a different set of signal parameters ~θi
at each detector. We will set the priors p(~θi|HG) = p(~θi|HS)
and the likelihood P (di|~θi,HG) = P (di|~θi,HS), but this
may be relaxed to better capture specific glitch features, if
necessary. The surrogate HG model captures the portion of
glitches that lie within the manifold of CBC signals and, in
a sense, corresponds to the worst possible glitch – one that
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looks exactly like coincident CBC signals. Variations of this
strategy have been used before in the analysis of compact
binary coalescences, minimally modeled transients, and con-
tinuous waves. Other searches also make use of likelihood
ratios in the detection process, but they do not rely on signal
coherence [5].

Finally, because we assume a perfect measurement of the
detector noise power-spectral-density (PSD), the Gaussian-
noise evidence is just the usual null likelihood. For our
Fourier-domain data, this is:

(ZNi )≡ P
(
di|HN

)
=N

(
di
)

Where N(di) is the product of a multidimensional normal dis-
tribution with zero mean and variance derived from the noise
PSD. In principle, this could be generalized to marginalize
over poorly known PSD parameters if needed [5].

We want to calculate the BCRs for triggers produced in all
observing runs to detect weak GW signals and potentially
define empirical probability distributions that would allow us
to obtain likelihood ratios to use for trigger classification.

The BCRs will be computed with the likelihood values cal-
culated from running Bilby [7] jobs on the LIGO cluster. We
will run hundreds of Bilby jobs on injected signals, glitches,
confirmed signals, and marginal triggers analyzed with an as-
trophysical and respective noise models for both Advanced
LIGO (aLIGO) detectors.

We will compute and apply the BCR to O2 (Observation Run
2) and O3 background triggers in effort to reject any glitches.
This will allow an updated false alarm rate (FAR) to be used
for O3 event analysis. A BCR < 1 would allow for the rejec-
tion of that trigger as a GW event because it would favor the
odds of the hypothesis that the data is comprised of incoher-
ent instrumental noise.

Various plots will be produced to visualize the results from
using the BCR to compare real and simulated signals to in-
herent noise. I will utilize Thomas Alford’s Bilby tutorial
python code [8] to produce plots in Equation 1, following the
discussion in [5].

Progress. For this project I am developing a thorough un-
derstanding of Bayesian inference and parameter estimation
and its potential applications to GW research. I have also
become familiar with Alford’s python code [8]; which has
allowed me to understand how to utilize LIGO data and set
up to run multiple Bilby jobs on LIGO’s computer cluster.

I investigated if there are any overlapping trigger times from
several published sub-threshold trigger catalogs, such as
GWTC-1 [3], 1-OGC [9], two from Princeton [10, 11]. I ex-
tracted the intervals of data that surrounded the trigger times

Fig. 1. Frequency plot of the amplitude spectral density (ASD) over a GPS time
frame (1242442965.45, 1242442969.45). This data was taken from the channel
L1:GDS-CALIB _STRAIN_CLEAN. Frequency range specified for LIGO-Virgo sen-
sitivity band. Below 10 Hz is not properly calibrated. Above 103 Hz is affected by
detector quantum noise.

listed in the various catalogs and write corresponding hdf5
files. This was done after first converting all published trig-
ger times into GPS time, the time in seconds from January
06, 1980. For each catalog’s list of triggers, I appended them
to a list and sorted them from lowest to highest trigger times
to discern if there were any overlapping triggers within a cat-
alog. To make this determination, I compared whether the
ending time of the first trigger was greater or equal to the
starting time of the following trigger. I used a loop to iter-
ate through each list. I then compared multiple catalogs for
overlapping trigger times by appending the sub-lists into one
list and resorting it so that the triggers were ordered lowest
to highest GPS time. By running the new list through the
same loop, I was able to determine no overlapping trigger
times from the four sub-threshold catalogs, given a specified
time range of ± 0.1 s surrounding the published trigger times.
However, I am expanding my specified time range to identify
any sub-threshold triggers that are reasonably close in time,
given that multiple sub-threshold catalogs utilized different
pipeline searches to produce their respective catalogs.

In python, I have produced frequency plots that have been
averaged over a stretch of time (Figure 1) for various trigger
times to visualize how the amplitude spectral density (ASD)
in the data evolves over specified time intervals.

I have used a computed set of BCR and SNR data files to
compute the log10BCR to produce density plots against cor-
responding SNR distributions with varying α and β values,
as shown in Figure 2. Contour and scatter plots show how
the foreground, background, and selected GW trigger relate
log10BCR vs SNR. The relation between these data subsets
are also shown in a histogram with counts vs log10BCR, and
cumulative distribution function vs log10BCR to represent
the survival function from the selection of background trig-
gers and foreground signals [5]. These visualizations help
indicate whether the α and β values need to be adjusted and
whether the BCR is effectively distinguishing GW signals
from inherent noise [8].
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Fig. 2. Density Plots with α = 3.62804 × 10−11and β = 3.26975 × 10−06. Adjust-
ments in α and β are needed due to no clear distinction between the background
and injections in the data.

Analysis. To submit and run bilby_pipe jobs on the LIGO
computer cluster I need to have several files for each job. An
.ini file contains a set of user input arguments that is used to
initialize a bilby_pipe job. These arguments include the out
directory for the results, detectors, channels, gps trigger time,
duration, sampler type, and prior file or gps and time shift
files. The detectors and channels are specified so that bilby
can locate the data for the duration around the specified gps
trigger time. The sampler type I used is dynesty, which is a
dynamic nested sampling algorithm that performs parameter
estimation and evidence calculation. The prior file is a text
file that contains ranges of the 15 parameters that characterize
a specified CBC. The gps file is a text file that contains the
gps trigger time to be used in the computation. The time shift
file is another text file containing the respective time shifts to
be applied to Hanford (H1) and the Livingston (L1) detectors
for each gps time.

I cloned Avi Vajpeyi’s GitLab repository of Bilby_Pipe code
[12] to analyze his results of computing lnBCR’s for time
shifted data of GW150914 and hacking his code to analyze
other O3 super event triggers, background, and confirmed
O1 and O2 GW events. Bilby_Pipe is a Python 3 tool for
automating the process of running bilby for gravitational pa-
rameter estimation on computer clusters [13].

Since aLIGO does not operate continuously and its obser-
vation run has only spanned several months, time shifting
the data allows us to artificially generate more data contain-
ing accidental coincidence of noise events in two or more
detectors to compare trigger times and calculate FARs and
lnBCRs. Time shifting the data is when a specified time dif-
ference is applied to one or both detector gps times. This
results in a new simulated data set that can be reanalyzed for
trigger events such as glitches. When computing lnBCRs I
generally used time shifts of subtracting 1000 seconds to the
initial trigger time and adding 1000 seconds to both detector
gps times. I expected a similar lnBCR as when no time shift
was applied to the data because the time shifts should can-
cel each other out, my results reflected this. I also applied
a time shift of adding 500 seconds to the initial trigger time

and the Livingston detector (L1) gps time while subtracting
500 seconds to the Hanford detector (H1) gps time. The de-
liberate time shifting of the detectors in opposite directions
is expected to represent just noise in the data and therefore
resulting in a small or negative lnBCR value, which initial
results seem to reflect.

I was able to produce similar lnBCR results as [12] for the
time shifted GW150914 data, with values ranging 11 - 14.
This gave me confidence that I could submit bilby jobs to
condor and produce results. I then applied the same time
shifts to the loudest 2 O3 background triggers determined
by the Coherent Wave Burst (CWB) group of an Interme-
diate Mass Black Hole (IMBH) search, with H1 gps times
of 1241670026 and 1239849040.59, respectively as reported
by [14]. I wanted to test the code on only two background
triggers because I wanted to determine the proper signage for
the time shift difference between the H1 and L1 gps times.
I chose to keep H1 as my baseline and apply the additional
time shift to L1. By subtracting L1 gps time from H1 gps
time, I got a value in seconds. For the loudest background
trigger, I chose to keep the same sign as the computed value.
For the second loudest trigger, I applied a sign change to that
value and used it in the time shift code. Knowing that these
triggers were background and I was using a BBH prior, I ex-
pected negative lnBCR values. For the first trigger, I did get
lnBCR values ranging between -13 and -11. For the second
trigger, I got much smaller lnBCR values between -6 and +1.
This indicated to me that the correct signage for the additional
time shifts would be whichever sign the value was when I
subtracted L1 from H1 gps time. I corrected the signage for
the second trigger and got resulting lnBCR values between -
14 and -12. The large negative values represent that the glitch
model is supported more than the signal model, which gives
us confidence that we can likely reject this trigger as a CBC
event.

I am working on a python 3 script that will be able to gener-
ate and submit bilby_pipe jobs for the top 100 loudest back-
ground triggers from the CWB group. I have successfully
read in the text file containing the relevant H1 and L1 gps
times for each trigger. I have isolated the top 100 trigger
times in a list and have computed the time differences be-
tween H1 and L1 for each trigger in a separate list. I am
working on generating the appropriate files to run time shift
data and compute lnBCR values to compare with my other
results.

I then wanted to calculate the lnBCR values for all 22 of the
O3 super events posted to the public alerts page on GraceDB
as of August 01, 2019 [15]. To accomplish this, I needed
to change some information for each job that I wanted to
submit to the cluster. For the .ini file I needed to change
the label and out directory to include each event appropri-
ate name, for example S190521g . I had to insert the cor-
responding gps trigger time as listed by the preferred event
on GraceDB. I also had to change the channel to GDS-
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CALIB_STRAIN_CLEAN, which corresponded to O3 data.
I found the available channels through the terminal with the
command:

FrChannels /archive/frames/O3/hoft/H1/H-H1_HOFT_C00-
12390/H-H1_HOFT_C00 1239085056-4096.gwf

O3 represents the third observation run of LIGO. hoft is what
it sounds like: h(t) = strain in the data. H1 is the Hanford
detector and the rest is just specifying the calibration round
(C00), gps time (1239085056) and the sampling frequency
(4096 Hz). I chose the CALIB_STRAIN_CLEAN channel
because it seemed the most applicable data to my lnBCR
analysis of the strain.

I first wanted to analyze O3 events using a prior profile that
was run on GW150914. This prior had a mass range of 10-
80 solar masses and a minimum mass ratio of 0.125. From
some initial lnBCR values, I chose to adjust the GW150914
prior by extending the mass range from 8 - 80 solar masses
and the minimum mass ratio to 0.100. I chose to make this
change because I wanted to avoid false posteriors if compo-
nent masses were at or near the prior boundaries. I used this
same altered prior for the likely BNS super events. How-
ever, since they likely contain a neutron star,their component
masses are below 3 solar masses and I do not expect this prior
to produce positive lnBCR values.

I wanted to also run an analysis of the O3 super events using
an IMBH prior. Since an IMBH event would be comprised
of large component masses I decided to use an IMBH prior
generated by Vajpeyi [12]. This prior has a mass range for 70
– 150 solar masses and a minimum mass ratio of 0.08.

After my first couple rounds of submissions for the O3 super
events I was outputting lnBCR values that were smaller than
I thought they would be. Due to some investigation, it was
found that when extracting the evidence to produce the results
of the lnBCR values, the α and β values were both set to 1.

When I was working with Alford’s IMBH_Data_Analysis
python code [8], it was clear that α = 1 and β =1 are not good
values to separate background from injection signals.

Instead, in that same notebook and in [5], it was found that
appropriate values are α = 10−6 and β = 10−4. When I
changed these values and re-ran the super events the lnBCR
values were more aligned with what we expected.

To further analyze these results, I looked over intrinsic cor-
ner plots, as seen in Figure 4. The corner plot displays the
probability distribution between the 15 CBC parameters and
shows the likely value as a result of this parameter estima-
tion. I also looked at the checkpoint trace plots (Figure 5)

Fig. 3. Density Plots. α = 1 and β =1. The resulting plots show that there is no
clear differentiation between background triggers and injections in the data.

Fig. 4. Intrinsic corner plot for GW150914. The top two rows and two left columns
show the probability distributions for the two component masses, in solar masses.
The likely values and their uncertainties are displayed above the histogram.

Fig. 5. Checkpoint trace plots for GW150914. The two rows show data for the
two component masses, in solar masses. The left plot shows the convergence of
the likely component mass values as a result from the parameter estimation. The
right column shows the resulting probability distribution in reference to the prior
boundaries.

which show the progress of the parameter estimation dy-
namic nested sampling algorithm. Ideally, we want to see
a nice Gaussian distribution in these plots to indicate that
our prior parameter ranges, such as minimum and maximum
masses, are adequate for the data we want to analyze.

Future Work. Moving forward, I would like to rerun the 4
likely BNS super events with a prior that is structured for
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such a CBC signal and compare lnBCR values. I would also
like to submit bilby_pipe jobs for at least the top 100 loud-
est background triggers for O3 [14]. For those jobs, I am
planning on using an IMBH prior since these triggers were
flagged by an IMBH pipeline search. I would also like to
run a series of injections in the O3 data and compute lnBCR
values. Having lnBCR values from O3 super events, back-
ground, and injections would provide me with a nice sam-
pling to suggest whether computing the lnBCR values would
improve the detection of marginal and sub-threshold com-
pact binary merger events in LIGO data. If these results are
promising, I would also like to calculate the lnBCR values
for all sub-threshold trigger events found in the GWTC-1, 1-
OGC, and both Princeton catalogs from O1 and O2. I would
also compute lnBCR values on O1 and O2 background, GW
events, and injections. This should provide a comprehen-
sive analysis of the lnBCR computation and its potential to
enhance GW detections by updating the FAR as a result of
identifying any likely GW events and/or rejecting any likely
triggers due to instrumental noise. An improved FAR can be
used to improve our confidence in GW detection events in the
current and future LIGO data.
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