
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Publication LIGO-P1900188–v2 2019/09/28

Optical Cavity Inference

Techniques for Low Noise

Interferometry

Jorge Ramirez
Mentors: Craig Cahillane, Anchal Gupta, Rana Adhikari

Distribution of this document:

AIC, ISC

California Institute of Technology Massachusetts Institute of Technology
LIGO Project, MS 18-34 LIGO Project, Room NW22-295

Pasadena, CA 91125 Cambridge, MA 02139
Phone (626) 395-2129 Phone (617) 253-4824

Fax (626) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

LIGO Hanford Observatory LIGO Livingston Observatory
Route 10, Mile Marker 2 19100 LIGO Lane

Richland, WA 99352 Livingston, LA 70754
Phone (509) 372-8106 Phone (225) 686-3100

Fax (509) 372-8137 Fax (225) 686-7189
E-mail: info@ligo.caltech.edu E-mail: info@ligo.caltech.edu

http://www.ligo.caltech.edu/

http://www.ligo.caltech.edu/


LIGO-P1900188–v2

Abstract

Gravitational waves are being detected more and more frequently by the Advanced
LIGO interferometers due to the improvements made to their precision. To improve
the rate at which we detect gravitational waves, one method would be to reduce the
noise that is intrinsic to these signals, so that more signals can be extracted with
confidence. To achieve this, a deeper understanding of the noise couplings that mask
these signals is necessary. This project seeks to develop statistically rigorous methods
of analyzing signals from Fabry-Perot cavities and recovering otherwise difficult to
measure parameters which govern these noise couplings using interferometer modeling
software and Bayesian inference techniques.

1 Introduction

Gravitational waves exist as a consequence of general relativity imposing a universal speed
limit on the diffusion of information in the universe. Gravitational waves cause regions of
space to shrink and expand in specific directions, and any masses in this region of space
will shrink and expand accordingly. This affect that gravitational waves have on spacetime
is quantized in terms of the strain that occurs in any mass located in that system. The
usefulness of being able to detect gravitational waves is apparent when reviewing the sources
of gravitational waves and their ability to propagate. Current observational astronomy is
conducted through the measurement of electromagnetic waves of varying wavelengths. Grav-
itational waves are an entirely different class of physical phenomenon that can be analyzed
to learn more about the universe. The two main drawbacks of observing electromagnetic
waves is that their energies fall off as an inverse square law. Gravitational waves are unique
in that although their energy falls off as an inverse square law, the strain they induce in de-
tectors falls off only as an inverse law. This property has profound implications for the field
of observational astronomy- an upgrade that increases the sensitivity of an electromagnetic
detector by 100 times will increase its range by 10, whereas the same upgrade made to a
gravitational wave detector will have its range increase 100 times. [1, 2]

The strain is expressed, by convention, as the relative change in length as a fraction of
the original length. For example, a 1.0 meter by 2.0 meter rectangle with an incident
gravitational wave perpendicular to the norm with a strain = 0.1 will oscillate between having
one side of 0.9 meters and 1.1 meters and the other side 1.8 meters and 2.2 meters. This
shrinking and expanding of masses is capable of doing work as posited by the ”sticky bead
argument” [3], which describes a stationary rod with beads that has an incident gravitational
wave induce an oscillatory strain that in turn also induces friction between the beads. Thus,
it can be said that gravitational waves also carry energy and do work on systems of masses via
the gravitational force. This oscillation will have sinusoidal components that correspond to
the frequency of the incident gravitational wave. In addition to the strain, gravitational waves
also have a period and frequency associated with their wave-like nature. These properties are
inherent to the system from which they are radiated from; a binary system of supermassive
black holes radiate gravitational waves with a frequency of 10−8 to 10−2 Hz, objects captured
by those same black holes can radiate gravitational waves of 10−5 to 10−1 Hz, binary systems
of regular black holes can radiate gravitational waves from 10−3 to 103 Hz, and rotating non-
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spherical neutron stars and non-symmetric supernovae [4].

Gravitational wave detectors have been prototyped in various forms since the 1970’s by fa-
mous scientists such as Joseph Weber and Rainer Weiss [5]. The most successful detectors
today belong to the LIGO Scientific Collaboration and employ laser interferometers to de-
tect gravitational waves that pass through the earth by clever measurements of the strain
induced on two perpendicular long laser beams. With these detectors, and upgrades being
made to their sensitivity and noise reduction, gravitational waves are being detected more
consistently than ever before. The current goal for all of these gravitational wave detectors
is to improve the quality of signals that we extract from our data. This can be accomplished,
broadly speaking, in two major ways: we can either improve the quality and precision of
our mirrors, detector optics, and laser source inside the interferometer, or we can develop
better control systems and noise reduction and filtering systems that can actively deal with
the background noise. The background noise associated with gravitational waves detected
by these laser interferometer detectors is a thorough blend of many different unrelated noise
sources. Some of these noise sources are: seismic noise, environmental noise like cars or
earthquakes, thermal noise, microscopic fluctuations of the individual atoms of the detector,
shot noise, the quantum effect of the discrete nature of photons at the detector’s photode-
tectors limiting their accuracy, and laser noise, which is noise originating from the variations
in the laser’s intensity and frequency.

2 Motivations

This project sought to understand the noise coupling mechanisms that allow various noise
sources to “leak” into the gravitational wave signals being detected at the LIGO interfer-
ometers. In order to understand these noise coupling mechanisms, there exists a need to
develop statistical methods of determining which detector parameters influence these cou-
pling mechanisms the most, and with what confidence we can say that they do. The benefit
of doing this is clear, if we can understand how noise couples to our gravitational wave
signals, then work can be done to improve our control systems to counteract those specific
coupling mechanisms.

In preparation for developing cavity inferencing techniques, considerable effort was placed on
understanding how Fabry-Perot cavities operate. Since there are many different parameters
involved at various stages of the usage of these cavities, a need for being able to corroborate
analytic estimations with well-known results was established. Thus, this project employed
the usage of a cavity simulation software known as FINESSE [6] in order to corroborate the
project’s analytic findings with computer numerical simulations, providing a “baseline” for
the calculations done. Another advantage of the computer simulation is that there are several
parameters that are either difficult, or outright impossible, to measure or tune precisely in
a laboratory setting. For example, there is no way to sample the strength of the electric
field of a laser at any point in a cavity (or anywhere else) since amplitude detectors do not
exist. Scientists working with interferometers must work in terms of laser power by counting
photons with photodiodes which introduces a new source of signal noise on the quantum
level called photon shot noise.
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Before being able to draw inferences from data and extract information about cavity param-
eters, a thorough analysis of the physics and mathematics of two mirror cavities was done in
preparation for this project. The frequency domain equations which describe the strength of
the electric field reflected from the cavity, the fields circulating in the cavity, and the fields
transmitted through the cavity were derived and confirmed within error using the numerical
simulation. They then served as a baseline for simulating how a cavity behaves as certain
parameters were shifted, such as reflectivity of the incident and end mirrors, the relative
microscopic distance between the mirrors, the power and frequency of the cavity laser, and
finally the depth and frequency of modulation used in determining a self-correcting error
signal.

After developing a simulation framework for cavities and developing a general understanding
of their behavior under various excitation patterns, great emphasis was placed on under-
standing the effect of noise and uncertainty in generic sets of data and assigning confidence
intervals based on their projected fits. In order to understand the process of fitting models
to data, several sets of data were generated based on a model plus random Gaussian noise
to obfuscate the original model. Then, a model was derived analytically alongside a model
generated using scientific computing code libraries and the two were compared. Finally,
a confidence interval, or more accurately a “numerical budget”, was created by sampling
the covariance matrix generated by SciPy in the computer case, and the covariance matrix
generated by inverting the fisher information matrix in the analytic case. Both covariance
matrices were sampled by dotting a random vector and adding that value to the best fit
parameters to simulate all possible deviations from the best fit model, and then highlighting
the first (68%) and second (95%) sigma confidence intervals, as seen in 6.

3 Analyses

The first milestone accomplished during this project was learning, understanding, and mod-
eling a two mirror cavity system both analytically and with computer simulations. Three
equations were derived with a normalization factor to describe how electric fields behave in-
side a two mirror cavity, specifically focusing on their electric field strengths (in amplitudes)
and their electric field phase change (in degrees), and seeing how these parameters evolve as
a result of shifting some characteristic of the cavity in a process referred to as ”tuning the
cavity”.

In order to simplify the analysis, the field amplitude and field phase were combined into a
complex number whose absolute value represented the amplitude and complex phase repre-
sented the phase change in any incident laser light. The cavity was tuned by shifting the end
mirror eight nanometers from left to right, treating the center as the point of resonance. The
resonance of the cavity is defined as the length at which the laser interferes constructively
between the two mirrors and destructively outside. In order for this to happen, the cavity
length must be an integer number of wavelengths of the main laser.

The constants assumed for all cavity analyses were that both input and end mirrors have
a power reflectivity, r2i = r2e = 0.999, that the transmissions of both input and end mirror
were equal and conserved, ti = te =

√
1− |re|2, the laser wavelength λ was 1064nm. The
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laser light was phase modulated with a frequency of 24MHz, to a depth of 0.1 radians.
This modulation was done to introduce smaller sidebands frequencies that are slightly off
resonance whose behavior can be monitored to determine how close our desired carrier is
to resonance. φ represents the ”tuning” of the cavity. In this case, φ = 2Lω

c
since we are

specifically varying the cavity length L, but we could have chosen any other parameter to
shift.

Ecav
Ein

=
ti

1− riree2iφ
∗ J0/1(Γ) (1)

Equation (1) models the electric fields inside the cavity, with a normalization factor of a
bessel function of the first kind, J0(Γ) for the carrier wave and J1(Γ) for the upper and lower
sidebands, which represents the electric field entering the cavity Ein.

Erefl
Ein

= ri −
t2i ree

2iφ

1− riree2iφ
∗ J0/1(Γ) (2)

Equation (2) models the electric fields reflected off the first mirror, with the same normal-
ization factor of J0(Γ) for the carrier wave and J1(Γ) for the upper and lower sidebands as
before.

Etran
Ein

=
−titee2iφ

1− riree2iφ
∗ J0/1(Γ) (3)

Equation (3) models the electric fields transmitted entirely through the entire cavity, with
the same normalization factor.

These three equations were used as the basis for the analytic description of how the electric
fields behave in a cavity whose length is changing. A python script was developed to plug
in all of our values and plot them to show how our carrier and sideband fields respond to
changes in the cavity. In order to confirm the accuracy of these equations an interferometer
simulation software named FINESSE was used to simulate the same two mirror system and
corroborate its findings with the previous analysis. The results of reflected fields can be seen
in Figures 1. The blue and green lines show an exact match between the analytic results
and the simulation, and the orange lines show any differences between them, referred to as
the residuals. The FINESSE code can be found in Appendix A.
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Figure 1: These four plots show the behavior of the carrier field reflected by the cavity
(eq. (2)). The plots on the left side show the amplitude and phase change of fields. This
plot shows an exact match between the analytic results and the simulation. The residuals
agree with this conclusion.
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In this project, we were most interested in locking the frequency of the laser to a set value
to minimize our lasers from drifting off resonance. One of the main difficulties with using
interferometers as gravitational wave detectors is that it is very difficult to have your laser
frequency match the cavity resonance conditions exactly since the cavity parameters tend
to drift. This drifting is due to random fluctuations, for example, small vibrations from the
earth can change the length of the cavity, imperfections in the mirror coatings can alter the
reflection coefficients, and imperfections in the laser crystal can excite unwanted harmonics
and cause the frequency of the laser itself to wander. All of this make it almost impossible
to lock onto a sensitive cavity since the cavity is only resonant for a very tiny range of
frequencies.

The most common method of stabilizing the frequency of the laser is called the Pound-
Drever-Hall technique which employs the use of a phase modulator to create upper and
lower sidebands in the field of the laser whose purpose is to serve as ”guards” for the carrier
frequency from wandering too high or too low. If the laser is perfectly locked to the cavity,
then these sidebands will reflect off the cavity. If the laser frequency is too high, then the
upper sideband will not be reflected as before and this will trigger control systems to lower
the laser frequency, and vice versa if the laser frequency is too low then the lower sideband
will not be reflected as before and the control systems will raise the laser frequency. This
negative feedback loop is an essential control system in locking a laser to a cavity.

The PDH technique is analytically derived in Appendix B of J. Driggers Thesis [7] to arrive
at the following equations for the in-phase portion and quadrature-phase portions of the
error signal. The sidebands reflect off the cavity and they are demodulated in order to arrive
at the following equations for the amplitude of the error signal. If the phase of the local
oscillator is set correctly, then the q-phase signal will disappear, leaving only the in-phase
signal to serve as a source for the laser frequency control.

V I
refl = J0(Γ) J1(Γ) Re

[
rcav(ω)r∗cav(ω + Ω) + r∗cav(ω)rcav(ω − Ω)

]
(4)

V Q
refl = J0(Γ) J1(Γ) Im

[
rcav(ω)r∗cav(ω + Ω)− r∗cav(ω)rcav(ω − Ω)

]
(5)

After establishing and confirming simulation environments for electric fields in Fabry-Perot
cavities, a comparison between 0 sideband and 5 sideband simulation was conducted. This
was done in order to investigate how the analytic derivations may vary from the ”true”
result, since the PDH-signal equation assumes the existence of only one sideband, where in
practice there may be several more whose contributions lessen the further they get from the
carrier resonant point. The following plot shows the discrepancies between the 0 sideband
and 5 sideband FINESSE simulations.
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Figure 2: This plot shows the same 0 vs 5 sideband comparison as the previous plot, but
instead shows the fields transmitted through the cavity. One can see the resonant frequencies
that the sidebands respond to in the cavity, and that each sideband is separated by about
6nm worth of tuning in the cavity.
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Figure 3: These four plots show the PDH error signal that determines the required mirror
tuning in response to scanning the cavity length from -12 to +12 nm. This PDH signal is
sampled from the light reflected off the cavity, and is identical from light transmitted through
the cavity. In situ, the local oscillator would be phase shifted so that the quadrature phase
(bottom plots) is pushed to zero, and then the in phase PDH signal is used to a drive a
self-correcting servo on one cavity mirror.
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After the sideband behaviors were analyzed and discussed, the project then moved on to
characterize the affect of shot noise and length noise on the signal. For the next analysis,
we introduced photon shot noise which is the uncertainty associated with the counting of
photons. This project measured the shot noise as a function of the time elapsed while
counting, since shot noise is fundamentally a Poisson-like distribution of photon counts
measured at the photodiodes. A fast sweep results in a low number of counts and leads to
shot noise dominating the signal, and a slow sweep leads to a high number of photon counts
which reduces the uncertainty by a factor of

√
N much like any other Poisson distribution.

At this point in the project, we also added a few new important parameters regarding time
such as the number of samples taken becoming a function of the time elapsed measuring
(referred to as sweep time) and the sampling rate (≈100MHz).

σshot =

√
~ωPlaser
τsweep

=

√
hωPlaser
τsweep
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Figure 4: The randomly generated shot noise, in this case setting τsweep = 100µs. The
red curve represents the standard deviation of the expected shot noise, and this was used
to sample a Gaussian distribution for N samples of shot noise for each data point in the
simulated cavity transmitted power.
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In addition to shot noise, we created simulations for another major source of noise known as
length noise. Length noise is generally associated with the uncertainty in the true position of
our servo motors during a cavity sweep, but can also arise from any other coupling mechanism
that affects the relative distance of our mirrors. A realistic estimate for an amount of length
noise we’d see in the lab is about a 0.03nm, for which the plot of the simulation can be seen
below.

Figure 5: The randomly generated shot noise, in this case setting τsweep = 100µs. The
red curve represents the standard deviation of the expected shot noise, and this was used
to sample a Gaussian distribution for N samples of shot noise for each data point in the
simulated cavity transmitted power.
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Developing mathematical models for sets of data is a critical part of any experimental pro-
cess, and equally so for this project. In order to extract information from the data we
simulate, the data must be scrutinized with a statistical lens which then leads to increased
capacity to derive experimental parameters and assert their accuracy with specific levels
of confidence. This can become very unwieldy when it comes to experiments with various
equations, parameters, and models, thus the involvement of statistics in this project was
taken in several steps.

First, a random set of data based on a linear model y = mx + b was generated and then
the values for m and b were determined concurrently. In one method, the data and each
data point’s uncertainty was plugged into the scientific computing package known as SciPy’s
curve_fit() algorithm, which returned two values of m and b with a two dimensional
covariance matrix. The second method was more analytic and involved manually calculating
a least squares sum, inverting the coefficient matrix and solving for the parameters, as well
as constructing a fisher information matrix and inverting it to obtain the covariance matrix.
These covariance matrices were then sampled using 10,000 random vectors and plotted to
obtain a 1-σ and 2-σ confidence interval, as seen below.

Figure 6: A set of data was generated by explicitly calculating y = mx + b for a set of x-
values, and for each data point a random amount of Gaussian noise was added and assigned
an uncertainty. The manual fit was determined by calculating a least squares sum, and the
SciPy fit was determined using SciPy’s curve fitting algorithm. The 1-σ and 2-σ lines were
determined by using a sorting algorithm on each set of y-values corresponding to a single
x-value, and then taking the upper and lower 34 percentiles, and 95 percentiles.
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The next round of practice was done on simulated data from FINESSE. The equation that
describes the behavior of transmitted power through a Fabry-Perot cavity takes the form of
Lorentzian, also known as the Cauchy Distribution, given by the equation:

L = A ∗
1
2
Γ

(x− x0)2 + (1
2
Γ)2

This equation was used in conjunction with SciPy’s curve_fit() algorithm to obtain the
best fit parameter for x0, Γ, and scaling factor A along with the 3x3 covariance matrix
associated with these parameters. The same procedure for the determining the 1-σ and 2-σ
was performed, although the SciPy fit had such low uncertainty that the first and second
confidence intervals are directly overlaid onto the data signal, indicating that SciPy believes
the Lorentzian fitting the data perfectly, which is what we expect given that the Lorentzian
is the equation that governs the phenomenon of resonance.
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Figure 7: This plot shows the residual between the SciPy fit and the simulation, and with
comparison to Figure 4 shows that the residual is on the same order of magnitude as the
expected shot noise, indicating a close fit between the SciPy model and the data.
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Figure 8: This plot shows the same procedure used to determine the first and second sigma
confidence intervals for the linear fit, however the fit matches so well that the projected
threshold for 68% and 95% are extremely small.
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After having done all of these exercises in statistics and curve fitting, real data from an actual
laser cavity at the Coating Thermal Noise Lab at Caltech was used to fit a Lorentzian. This
data was taken on May 8th, 2019, by graduate student Anchal Gupta.

Figure 9: Real data from a cavity scan done in May. The three parameters represent the
variables of the Lorentzian distribution- γ is the half-width half-maximum, a is the scale
factor, and x0 is the offset.
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Finally, the project evolved from using traditional nonlinear regression fitting methods to
a more modern technique known as Monte Carlo Markov Chain (MCMC) methods. By
collecting all of our fitting variables for our model into a parameter space, we used python to
simulate several hundreds of random “walkers” that would move around in parameter space
based on a series of likelihoods. Each dimension of parameter space represented a variable
in our fit, and then by allowing the walkers to move and then check how their goodness of fit
compares between locations we arrived at new fits that highlighted the covariance between
cavity parameters.

Figure 10: This plot shows 1000 walkers each taking 600 random steps trying to find the set
of parameters with the best fit. T = TendTinput and R = ReRinput are cavity transmis-
sion/reflectivity parameters and converge relatively quickly, however the laser wavelength,
laser power, and modulation depth do not converge at all.
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Figure 11: This plot shows the scatter plots of all parameters each walker ended on. The
T vs R scatter plot shows a negative covariance plot which was what we expected based off
the conservation law for reflection and transmissions.
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4 Future Work

The immediate future work involves improving the MCMC fit done to simulation data by
introducing a new likelihood function alongside a non-flat prior. Currently, the MCMC fit
only judges each walker’s step by the final result of the fit, rather than the step in each
direction of parameter space. By introducing a likelihood function that nudges each walker
in the direction of more optimal parameters, as well as including a prior distribution to give
each walker a headstart, we can develop much more precise fits with lower margins of error.
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A Finesse Code

This is the code used to create a virtual two mirror cavity.1

#our two mirror cavity

{laser} n1 {modulator} n3 |mirror1| n4 :space2: n5 |mirror2| n6

# place lasers + modulators

l laser 1 0 n0 # 1 Watt, 0 Freq. Offset

s space0 0 1 n0 n1 # 0 meter space, required for modulator

mod modulator 24000k 0.1 1 pm 0 n1 n2 # 24MHz, 0.1 depth, 1 sideband

s space1 0 1 n2 n3 # 0 meter space, required for modulator

# place our mirrors

m mirror1 0.999 0.001 0 n3 n4

s space2 0.037 1 n4 n5

m mirror2 0.999 0.001 0 n5 n6

When analyzing the carrier and sideband fields at a certain location designated by N, these
commands were supplied to Finesse.

# place amplitude detectors at location {N} (reflected, cavity, or transmitted)

ad AmpDetector 0 {N}

ad USBDetector 24000k {N}

ad LSBDetector 24000k {N}

# shift the mirror tuning, phi, by degrees denoted by S1 and S2.

# Since finesse only accepts degrees for phi,

# convert 5nm to degrees by multiplying 5nm by 360/1064.

xaxis mirror2 phi lin {S1} {S2} {Num}

yaxis lin abs:deg

When analyzing the Pound-Drever-Hall error signal, these commands were supplied to Fi-
nesse.

# place photodetectors to observe the sideband

# behavior to determine error signal

pd1 inphase 24000k 0 n3

pd1 quadphase 24000k 90 n3

# shift the mirror tuning, phi, by degrees denoted by S1 and S2.

# Since finesse only accepts degrees for phi, convert 5nm to degrees by

xaxis mirror2 phi lin {S1} {S2} {Num}

yaxis lin abs
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