LIGO The Ballet of Binary Black Holes 1.3 Billion Years Ago (Give or Take)

Black Hole #1 36X more massive than the Sun 210 km in diameter

Black Hole #2 29X more massive than the Sun 170 km in diameter

Simulation slowed down 100x

Numerical relativity (solution to $G_{\mu\nu} = 0$) simulation (SXS Collaboration, http://www.black-holes.org/) Andy Bohn, François Hébert, and William Throwe, SXS

COLUMBIA

UNIVERSITY

The Detection of Gravitational Waves by LIGO and Virgo

Alan J Weinstein LIGO Laboratory, Caltech for the LIGO and Virgo Collaborations

Columbia Physics Colloquium, Apr 29, 2019

EVENT OBSERVED IN

GW170817: FIRST COSMIC EVENT OBSERVED IN GRAVITATIONAL WAVES AND LIGHT

LIGO-G1901145

Outline

- Very brief overview of gravitational waves
- Very brief overview of LIGO & Virgo GW detectors
- Where we've been: The O1 / O2 Gravitational-Wave Transient Catalog GWTC-1
- Where we're at: The third LIGO-Virgo observing run
- Where we're heading: The future of GW detection, physics and astrophysics

Gravitational waves

Masses that accelerate (eg, a binary orbit) create ripples of changing gravity (curvature) in space and time.

LIGO

The "news" of this changing gravity is carried by gravitational waves

Predicted by Einstein in 1916 (and discovered 100 years later)

Gravitational waveform can be computed using numerical solutions to *Einstein's field equations*

 $=\frac{8\pi G}{4}T_{\mu\nu}$ $G_{\mu
u}$

- •Most tests of GR focus on small deviations from Newtonian dynamics (post-Newtonian weak-field approximation)
- •Space-time curvature is a *tiny* effect everywhere except:
 - The universe in the early moments of the big bang
 - Near/in the horizon of black holes

•This is where GR gets *non-linear* and interesting!

•We aren't very close to any black holes (fortunately!), and can't see them with light or other EM radiation... But we can search for (*weak-field*) gravitational waves as a signal of their presence and dynamics

Nature of Gravitational Radiation

General Relativity predicts that rapidly changing gravitational fields produce ripples of curvature in fabric of spacetime

Stretches and squeezes space between

"test masses" – strain $h = \Delta L / L$

propagating at speed of light

LIGO

mass of graviton = 0

- space-time distortions are transverse to direction of propagation
- GW are tensor fields (EM: vector fields) two polarizations: plus (⊕) and cross (⊗) (EM: two polarizations, *x* and *y*)

Spin of graviton = 2

 $h(t,z) = h_{\mu\nu} e^{i(\omega t - kz)} = h_{+}(t - z/c) + h_{\times}(t - z/c)$

 $h = \Delta L / L$

Gravitational Waves

 $G_{\mu\nu} = 0 \rightarrow$ Solution for an outward propagating wave in z-direction:

A NEW WINDOW ON THE UNIVERSE

The history of Astronomy: new bands of the EM spectrum opened \rightarrow major discoveries! GWs aren't just a new band, they're a new spectrum, with very different and complementary properties to EM waves.

- Vibrations of space-time, not in space-time
- Emitted by coherent motion of huge masses moving at near light-speed; not vibrations of electrons in atoms
- Can't be absorbed, scattered, or shielded.

GW astronomy is a totally new, unique window on the universe

The GW Spectrum

LIGO

The Laser Interferometer Gravitational Wave Observatory

LIGO Laboratory is operated by Caltech and MIT, for the NSF.

~180 staff located at Caltech, MIT, LHO, LLO

LIGO Scientific Collaboration: ~ 1200 scientists, ~85 institutions, 15 countries

Vigo Collaboration: ~ 250 scientists, Europe

LS LIGO-Virgo-GEO Detector network

LIGO Scientific Collaboration

LIGO

The Advanced LIGO detectors

https://dcc.ligo.org/LIGO-P1500237/public/main

GW sources for ground-based detectors: The most energetic processes in the universe

<u>Coalescing</u> <u>Compact Binary</u> <u>Systems</u>: Neutron Star-NS, Black Hole-NS, BH-BH

- Strong emitters, well-modeled,
- (effectively) transient

Asymmetric Core Collapse Supernovae

- Weak emitters, not well-modeled ('bursts'), transient

- Cosmic strings, soft gamma repeaters, pulsar glitches also in 'burst' class

<u>Cosmic Gravitational-</u> <u>wave Background</u>

- Residue of the Big Bang, long duration

 Long duration, stochastic background

<u>Spinning neutron</u> stars

- (effectively) monotonic waveform
- Long duration

LIGO GWs from coalescing compact binaries (NS/NS, BH/BH, NS/BH)

• Neutron star – neutron star (Centrella et al.)

Tidal disruption of neutron star

A unique and powerful laboratory to study strong-field, highly dynamical gravity and the structure of nuclear matter in the most extreme conditions

Waveform carries lots of information about binary masses, orbit, merger

https://www.black-holes.org/explore/movies

Separation (R_S)

0

GW150914

Phys. Rev. Lett. 116, 061102 – Published 11 February 2016 https://dcc.ligo.org/LIGO-P150914/public/main

Three BBH events, compared

Abbott, et al., LIGO Scientific Collaboration and Virgo Collaboration, "Binary Black Hole Mergers in the first Advanced LIGO Observing Run", https://arxiv.org/abs/1606.04856, Phys. Rev. X 6, 041015 (2016)

GWTC-1 - #UpToEleven

Starting to build up a mass distribution

LIGO

Data release -

https://www.gw-openscience.org/catalog/

- GWTC-1 strain data, parameter estimation samples, skymaps, ...
- Full O1 & O2 strain data

LIGO

- Tutorial, software
- Detector status
- Event alerts
- Lots more!

RC		Gra	avitation	al Wave (Open Sc	ience Ce	enter					
Data -	Software -	Online S	tatus• About	GWOSC-								
	(a (Catalog GWTC-1-confident Confident detections from GWTC-1, the Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Catalog Description										
	F	or strain da • Click ar • Or see	ta: event name the JSON file list									
	נ פ	SON Param	eter Table (A-Z) *							Show/hide columns		
		Event	Primary mass (M_sun)	Secondary mass (M_sun)	Effective inspiral spin	chirp mass (M_sun)	Final spin	Final mass (M_sun)	Luminosity distance (Mpc)	GPS time (s)		
		GW150914	35.6 ^{+4.8} _{-3.0}	+3.0 30.6 -4.4	+0.12 -0.01 -0.13	28.6 ^{+1.6} _{-1.5}	0.69 +0.05 -0.04	63.1 ^{+3.3} _{-3.0}	+150 430 -170	1126259462.4		
		GW151012	23.3 ^{+14.0} _{-5.5}	13.6 ^{+4.1} _{-4.8}	+0.28 -0.19	15.2 ^{+2.0} _{-1.1}	0.67 +0.13 -0.11	35.7 ^{+9.9} _{-3.8}	+540 -480	1128678900.4		
		GW151226	13.7 ^{+8.8} _{-3.2}	7.7 ^{+2.2} _{-2.6}	0.18 +0.20 -0.12	+0.3 -0.3	0.74 +0.07 -0.05	20.5 ^{+6.4} _{-1.5}	440 ⁺¹⁸⁰ ₋₁₉₀	1135136350.6		
		GW170104	31.0 ^{+7.2} _{-5.6}	20.1 ^{+4.9} _{-4.5}	+0.17 -0.04 -0.20	21.5 ^{+2.1} _{-1.7}	0.66 +0.08 -0.10	49.1 ^{+5.2} _{-3.9}	+430 -410	1167559936.6		
		GW170608	10.9 ^{+5.3} _{-1.7}	+1.3 -2.1	+0.19 -0.07	+0.2 -0.2	0.69 +0.04 -0.04	17.8 ^{+3.2} _{-0.7}	320 ⁺¹²⁰ ₋₁₁₀	1180922494.5		
		GW170729	+16.6 -10.2	34.3 ^{+9.1} _{-10.1}	+0.21 -0.25	35.7 ^{+6.5} _{-4.7}	0.81 +0.07 -0.13	80.3 ^{+14.6} _{-10.2}	2750 ⁺¹³⁵⁰ ₋₁₃₂₀	1185389807.3		
		GW170809	35.2 ^{+8.3} _{-6.0}	23.8 ^{+5.2} _{-5.1}	0.07 +0.16 -0.16	25.0 ^{+2.1} _{-1.6}	0.70 +0.08 -0.09	56.4 +5.2 -3.7	+320 -380	1186302519.8		
		GW170814	30.7 ^{+5.7} _{-3.0}	25.3 ^{+2.9} _{-4.1}	0.07 +0.12 -0.11	24.2 ^{+1.4} _{-1.1}	0.72 +0.07 -0.05	53.4 ^{+3.2} _{-2.4}	+160 -210	1186741861.5		
		GW170817	+0.12 -0.10	1.27 -0.09	+0.02 -0.01	+0.001 -0.001	≤ 0.89	≤ 2.8	40 ⁺¹⁰ ₋₁₀	1187008882.4		
		GW170818	35.5 ^{+7.5} _{-4.7}	26.8 ^{+4.3} _{-5.2}	+0.18 -0.09 _{-0.21}	26.7 ^{+2.1} _{-1.7}	0.67 +0.07 -0.08	+4.8 59.8 _{-3.8}	+430 -360	1187058327.1		
		GW170823	39.6 ^{+10.0} _{-6.6}	29.4 ^{+6.3} _{-7.1}	+0.20 -0.22	29.3 ^{+4.2} _{-3.2}	0.71 +0.08 -0.10	65.6 ^{+9.4} _{-6.6}	1850 -840 22	1187529256.5		

Waveform reconstructions

- Model-independent (burst) waveform reconstructions.
- Capable of capturing unmodeled features (HOMs, eccentricity, tidal distortion, beyond-GR effects).
- BayesWave:

sum of sine-Gaussian wavelets $h(\vec{\lambda}; t) = \sum_{j=1}^{N} \Psi(\vec{\lambda}_j; t)$

with parameters $\vec{\lambda}$ determined from MCMC.

- Coherent WaveBurst (cWB): extract coherent (signal) part of h(t) from H, L.
- Only capable of picking out portions of waveform with significant SNR.
- By contrast, model-dependent (template-based) extraction integrates full SNR, even when buried in noise (as in GW170817).
- Broad, semi-quantitative agreement with GR model from LALinference

GraceDB — Gravitational Wave Candidate Event Database											
HOME	SEARCH LATEST DOCUMENTATION								LOGIN		
Latest – as of 27 April 2019 20:53:46 UTC										Dublia	
Test and MDC events and superevents are not included in the search results by default; see the <u>query help</u> for information on how to search for events and superevents in those categories.											
Ouerv											
Search for	Superevent										
Scaren ron.	Search										
	Search								(1996)		
UID			Labels		t_start	t_0	t_end	FAR (Hz)	Create	ed	
<u>5190426c</u>	QOK EMBRIG	HT_READY PAS	TRO_READY SKYMAP_REA	DY ADVOK GCN_PRELIM_SENT	1240327332.331668	1240327333.348145	1240327334.353516	1.947e-08	2019-04-26 15	:22:15 UTC	
<u>S190425z</u>	DQON SKYMAP	_READY EMBRI	GHT_READY PASTRO_REA	DY ADVOK	1240215502.011549	1240215503.011549	1240215504.018242	4.538e-13	2019-04-25 08	:18:26 UTC	
<u>S190421a</u>	DOOX EMBRIC	HT_READY PAS	TRO_READY SKYMAP_REA	DY GCN_PRELIM_SENT ADVOK	1239917953.250977	1239917954.409180	1239917955.409180	1.489e-08	2019-04-21 21	:39:16 UTC	
<u>S190412m</u>	СООК SKYMAP	REALY PASTR	O_READY EMBRIGHT_REA	DY ADVOK GCN_PRELIM_SENT PE_READY	1239082261.146717	1239082262.222168	1239082263.229492	1.683e-27	2019-04-12 05	:31:03 UTC	
<u>5190408a</u> p	DQOK ADVOK	SKIMAP_READ	Y PASTRO_READY EMBRIC	HT_READY GCN_PRELIM_SENT PE_READY	1238782699.268296	1238782700.287958	1238782701.359863	2.811e-18	2019-04-08 18	:18:27 UTC	
<u> 5190405ar</u>	DQOK SKYM	READY ENTRI	GHT_NEADY PASTRO_REA	DY ADVNO	1238515307.863646	1238515308.863646	1238515309.863646	2.141e-04	2019-04-05 16	:01:56 UTC	

((O))VIRGD

Possible BH-NS event (😂) Possible BNS event (😂) Three BBH events (😑) Mistake (😖)

Binary merger Model parameters

Intrinsic parameters: Ê masses (m_1, m_2) , spins (\vec{S}_1, \vec{S}_2) , tidal deformability $(\tilde{\Lambda})$, eccentricity **Extrinsic parameters:** time (t_c) , reference phase (φ_c) , sky position (α , δ), distance (d_L), orbital orientation (θ_{In}, ψ), Н1 Spin magnitudes and ¹⁰ ms light orientations, eccentricity, ... tell us something about how these binaries formed

Formation channels

https://dcc.ligo.org/LIGO-P1500262/public/main

○ Isolated binary
 ↓

Component masses

Mass distributions, 10 BBH events

LVC: https://arxiv.org/abs/1811.12940 (2018)

LIGO

Distances, redshift, lensing

- It's hard to measure distances in astronomy! (few "standard candles")
- BBH events are "standardizable sirens" (need to know their sky location, masses, orbital orientation, etc).
 - The more distance sources have red-shifted waveforms
 ⇒ redshifted masses!
- Distances measured poorly with only two detectors.
- Our most massive and distant events are at cosmological distances
 - GW170729 merged more than 6 By ago!
- These signals *may* have been (de-)magnified by gravitational lensing ... we may not be measuring their distances (or masses) at all!

Evolution of merger rate with redshift z

No evidence (yet) of evolution with redshift

LVC: https://arxiv.org/abs/1811.12940 (2018)

80

100

Radiated energy & luminosity

GW150914: 1.0 $E_{\rm rad} = 3.0^{+0.5}_{-0.4} \,\mathrm{M}_{\odot} c^2$ $\ell_{\text{peak}} = 3.6^{+0.5}_{-0.4} \times 10^{56} \text{erg/s}$ 0.8 GW151226: a_{f} $E_{\rm rad} = 1.0^{+0.1}_{-0.2} \,\mathrm{M}_{\odot} c^2$ 0.6 $\ell_{\text{peak}} = 3.3^{+0.8}_{-1.6} \times 10^{56} \text{erg/s}$ LVT151012: 0.4 2060 40 $E_{\rm rad} = 1.5^{+0.3}_{-0.4} \,\mathrm{M}_{\odot} c^2$ $M_{\rm f}({
m M}_{\odot})$ $\ell_{\text{peak}} = 3.1^{+0.8}_{-1.8} \times 10^{56} \text{erg/s}$

• GW150914: $E_{GW} \approx 3 M_{\odot}c^2$, or ~4.5% of the total mass-energy of the system.

- Roughly 10⁸⁰ gravitons.
- Peak luminosity $L_{GW} \sim 3.6 \times 10^{54}$ erg/s, briefly outshining the EM energy output of all the stars in the observable universe (by a factor ~ 50).

Sky localization

O2 GW events for which alerts were sent to EM observers.

O1 events along with O2 events (GW170729, GW170818) not previously released to EM observers.

- Inclusion of Virgo greatly improves sky localization: importance of a *global GW detector network* for accurate localization of GW sources (GW170814, GW170817, GW170818)
- GW170818 (LV) is best localized BBH to date: with a 90% area of 39 deg²

Credit: LIGO/Virgo/NASA/Leo Singer (Milky Way image: Axel Mellinger)

http://ligo.org/detections/GW170814.php

LIGO Multi-messenger Astronomy with Gravitational Waves

https://www.youtube.com/watch?v=e7LcmWiclOs

LIGO This is what I woke up to on August 17, 2017, just before 6am PT...

GW170817 A Binary Neutron Star Merger! (!!!!!)

http://ligo.org/detections/GW170817.php

LIGO To add to the excitement: a gamma-ray burst (GRB)!

1.7 seconds later, duration < 2 seconds

It has long been theorized that sGRBs come from binary neutron star mergers, and a ~2 s delay fits typical models...

kinda wimpy, though...

B. Abbott et al, LIGO-Virgo, Astroph.J.Lett. 848, 2, L13 (2017)

LSC HLVG – four-detector network for GW170817!

Our automated software ("pipeline") LIGO matched the GW signal to a predicted waveform for a binary neutron star merger

The longest (~ 60 s), loudest (SNR ~ 32), closest (40 Mpc) signal LIGO has ever observed! https://www.youtube.com/watch?v=WoDCPTLgxh4

As the stars spiral together, they get torn apart by each other's gravity: Tidal distortion \rightarrow Disruption!

The disruption of the stars results in a huge outflow of neutron-rich "dynamical ejecta" that powers a GRB and broad-band afterglow

BNS mergers, tidal distortion and disruption

Credit: Daniel Price and Stephan Rosswog

- Dead remnants of massive star core collapse supernovae
- A unique laboratory for fundamental physics
- All four forces of nature, Strong, Weak, EM, gravity – all under the most extreme beyond-laboratory conditions
- Structure can be revealed through binary mergers

Neutron stars

http://www.astro.umd.edu/~miller/nstar.html

NEOS, NS structure,

Credit: Daniel Price and Stephan

LIGO Tidal disruption of neutron stars near merger

Tidal deformability:

$$\Lambda = \frac{2}{3}k_2 \frac{c^2}{G} \left(\frac{R}{M}\right)^5$$

- k₂ is the 2nd Love number
- R and M are the radius and mass of the star
- LIGO results for GW170817 are most consistent with more compact stars, R < 14 km

Coughlin, Dietrich, Margalit, Metzger arXiv:1812.04803 (2018)

Time from BNS merger (s)

1.7 seconds later, duration < 2 seconds

What can we learn using just the GWs and the γ-rays?

Fundamental properties of GWs, unique new tests of General Relativity!

B. Abbott et al, LIGO-Virgo, Astroph.J.Lett. 848, 2, L13 (2017)

For the physicists: Fundamental properties of GWs and NSs

- The GW signal is fully consistent with General Relativity, over thousands of cycles.
- *GW polarization is consistent with"tensorial"* (+ and ×), not (pure) vector or scalar.
- Tidal disruption is weak: nuclear EOS is not stiff, NS radius < 14 km
- GWs, and γ-rays travelled for 130 million years (4 × 10¹⁵ s), arrived within 2 seconds of each other:
- The "speed of gravity": $V_{GW} = V_{light}$ to one part in 10¹⁵!
- No dispersion: mass of the graviton $m_g < (few) \times 10^{-23} eV/c^2$, consistent with 0.
- Improved Lorentz invariance violation limits; constrained to one part in 10¹³.
- Both the gravitons and the photons "fell" into the Milky Way Galaxy over the same time: the Equivalence Principle holds between gravitons and photons.

LIGO For the astronomers: within minutes, locate the source on the sky, tell telescopes where to point.

Source located to 28 sq deg, and ~ 40 Mpc. Time is of the essence!

(Initial alert sent out 27 minutes after the GWs passed through LIGO)

Virgo "non-detection" was very important!

It appears that the signal was in Virgo's "blind spot".

Reduces the localization patch to "only" ~28 deg²

LIGO-Virgo / Greco, Arnaud, Vicere (2017). Background: Fermi/NASA

LIGO Is there anything to be found in that spot on the sky? POINT YOUR TELESCOPES!

This is the REAL THING!!!

Credit: LIGO/Virgo/NASA/Leo Singer (Milky Way image: Axel Mellinger)

Is the the dawn of GW-multi-messenger astronomy?

The next evening: they got it!

M. M. Kasliwal et al., Science 10.1126/science.aap9455 (2017).

Light at Every Wavelength

Host galaxy: NGC 4993; redshift: ~ 0.01

What did the binary NS merger leave behind??

LIGO

http://ligo.org/detections/GW170817.php

LIGO The fate of BNS mergers – What is left behind?

Hyper-massive NS, or supra-massive NS

UVOIR light curves of the kilonova associated with GW170817

Margalit & Metzger (2017), Ap J L 850:L19

LIGO The origin of the (heavy) elements

Observed Solar Abundance = Quantity per merger x Rate of Mergers >~0.05 solar-mass x >~300/Gpc³/yr

Ejecta mass estimate: ~0.05 solar mass Merger rate estimate: $R = 1540^{+3200}_{-1220} \,\mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ Consistent!

Measuring the expansion rate of the universe in an entirely new way!

- From the GWs, we can measure the distance to the source fairly accurately: 40 Mpc or 130 Mly
- From the optical afterglow we can measure the redshift(recessional velocity) of the source galaxy NGC4993.
- Combining them gives the Hubble expansion rate H₀.
- Not terribly accurate yet, but in good agreement with measurements made in entirely different ways (which don't agree with each other!)

Coming years: more, and more sensitive detectors

LIGO

http://ligo.org/detections/GW170817.php

Coming years: more, and more sensitive detectors

https://arxiv.org/abs/1304.0670

Future prospects for terrestrial gravitational wave astronomy

B. P. Abbott et al. CQG 34 (2017) http://iopscience.iop.org/article/10.1088/1361-6382/aa51f4

Seeing to the edge of the (astrophysical) universe

Evan Hall / Salvo Vitale

Where are we?

Where do we go from here?

Obligatory ending cliché: The future of gravitational wave astrophysics is ... golden!

THANKS to my LIGO & Virgo collaborators, and to the 100's of EM astronomers who found GRB170817A and EM170817!

Thanks to the NSF!

And... thank you for your attention!