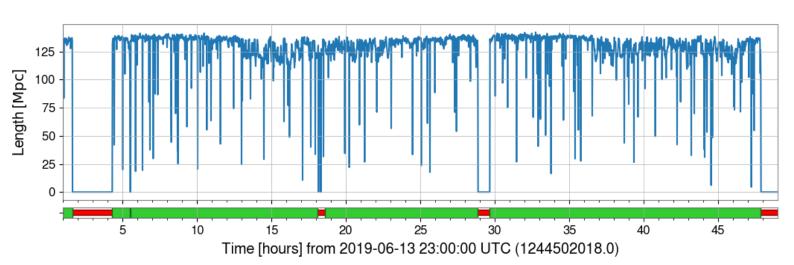
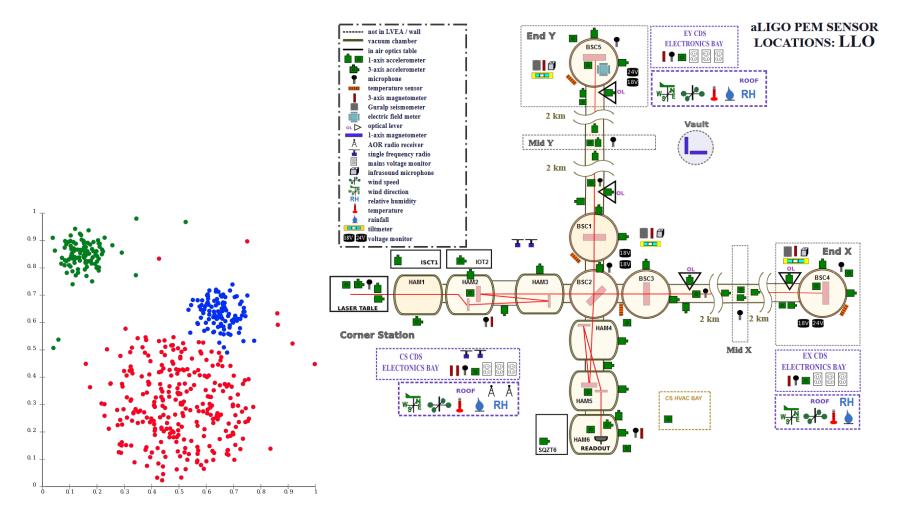


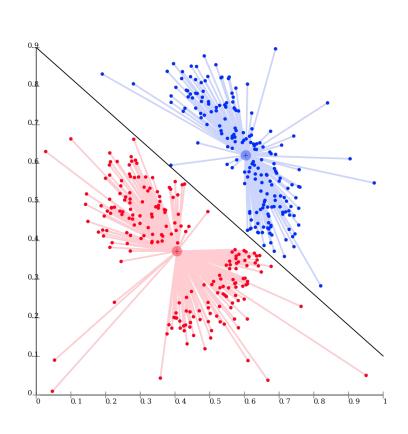
Correlation of Environmental Noise to Signals in LIGO Detectors via Clustering


Jacob Bernhardt

Clustering


L1:DMT-SNSH_EFFECTIVE_RANGE_MPC.mean

Clustering



k-means with Histories

$$\{s(t_0),s(t_{-1}),s(t_{-2}),\cdots,s(t_{-n})\}$$

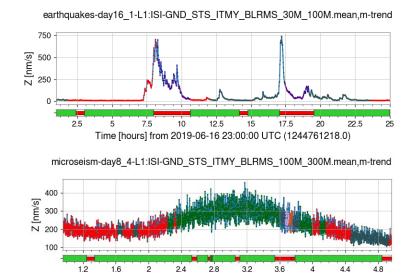
Coordinates of a point in the clustering subspace for a channel, with s(t) the channel amplitude time t.

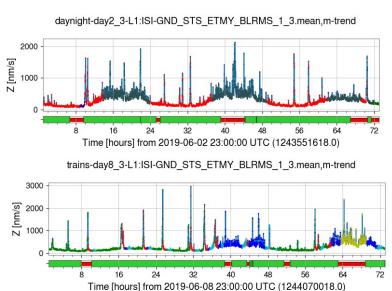
Known States: Seismic BLRMS

Identified with "2-hour history" *k*-means over 30 days:

- Earthquakes (0.01 to 0.1 Hz)
- Microseisms (0.1 to 1 Hz)
- Anthropogenic noise (1 to 10 Hz)

Optimized:

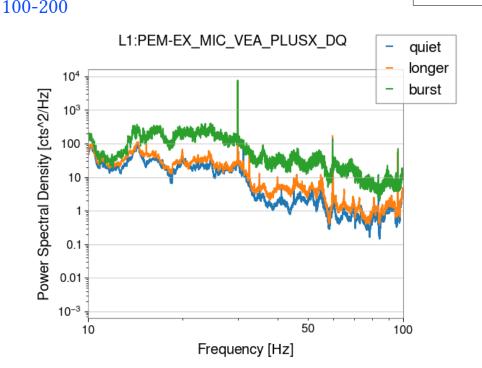

- length of history / number of clusters
- size of clustering space



Known States: Seismic BLRMS

Hz	0.01-0.1	0.1-1	1-10
E.Q.	~100x	~10%	~0%
μSeism	~50%	~250%	~10%
Anthro	~80%	~10%	~200%

Time [days] from 2019-06-08 01:00:00 UTC (1243990818.0)



Acoustic States

BLRMS:
10-28
28-32 (HVAC)
32-50
50-70
70-100
100 000

Hz	10-28	28-32	32-50
LVEA	109%	95%	176%
PLUSX	87%		89%
PLUSY	131%	83%	165%

Longer (hours) cluster, less loud, locked times

Quick loud burst cluster @ lock-losses

Hz	32-50	50-70
LVEA	1112%	890%
PLUSX	1183%	1034%
PLUSY	1100%	

Clustering with DARM

DARM BLRMS*:

10-13

18-22

22-27

27-29

29-40

40-54

54-65

65-76

75-115

115-190

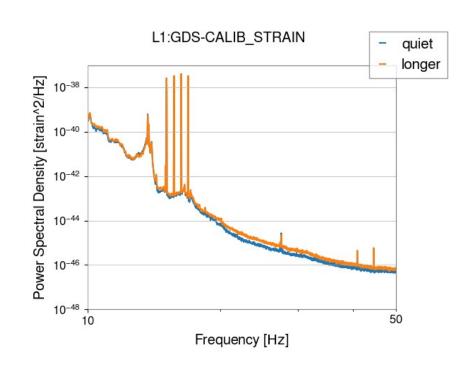
190-210

210-290

290-480

526-590

590-650


650-885

885-970

1110-1430

Longer (hours) cluster, less loud, locked times

Hz	22-27	27-29	29-40
GDS-CALIB_STRAIN	1%	3%	1%

⁸

Accelerometer States

BLRMS:

1-4

4-10

10-28

28-32

32-48

48-60

60-80

80-118

118-122

122-200

Infrequent burst

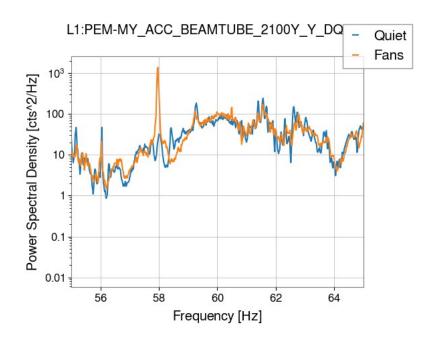
Hz	4-10
EX BSC4 X	427%
EX BSC4 Z	884%

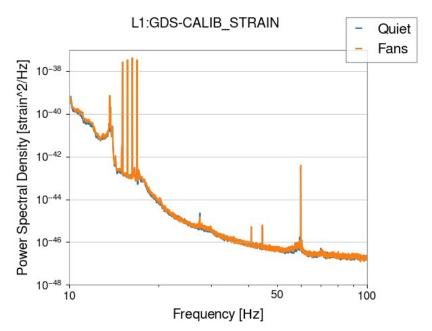
BSC focus

Hz	48-60	60-80	80-118
MY VEA BTUBE	256%	259%	123%
EY BSC5 Z	108%		

~1/2 day

Hz	48-60
MY 2100Y BTUBE	618%


Beamtube focus



Clustering with DARM

Hz	48-60	54-65
MY 2100Y BTUBE	618%	
GDS-CALIB_STRAIN		38%

Next Steps

- Focus on DARM
 - Try clustering only observing times
- More small PEM subsets
 - Many channels in few bands
 - Many bands in few channels
 - Target new sensors

Acknowledgments

Special thanks to:

Anamaria Effler Rana Adhikari All LLO Staff

Alan Weinstein & the coordinators of SURF

Appendix