
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note LIGO-T1900287–v1 2019/08/29

Data Clustering Techniques for the

Correlation of Environmental

Noise to Signals in LIGO Detectors

Jacob Bernhardt, Anamaria Effler, Rana Adhikari

California Institute of Technology Massachusetts Institute of Technology
LIGO Project, MS 18-34 LIGO Project, Room NW22-295

Pasadena, CA 91125 Cambridge, MA 02139
Phone (626) 395-2129 Phone (617) 253-4824

Fax (626) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

LIGO Hanford Observatory LIGO Livingston Observatory
Route 10, Mile Marker 2 19100 LIGO Lane

Richland, WA 99352 Livingston, LA 70754
Phone (509) 372-8106 Phone (225) 686-3100

Fax (509) 372-8137 Fax (225) 686-7189
E-mail: info@ligo.caltech.edu E-mail: info@ligo.caltech.edu

http://www.ligo.caltech.edu/

http://www.ligo.caltech.edu/


LIGO-T1900287–v1

1 Introduction

The LIGO project uses laser interferometry to measure gravitational waves (GWs). LIGO
interferometers transduce their relative arm length differences caused by GWs to a signal
composed of optical power, known as DARM.

Due to the amplitude scales of GWs, The LIGO detectors have to operate at a very high
sensitivity; the spectral density of a measurable length difference is as low as 2×10−20 m/

√
Hz

at 100 Hz. The design of earthbound LIGO is thus heavily focused on the filtering and
isolation of environmental noise.

To help identify and characterize environment-based noise, the LIGO detector has a Physical
Environment Monitoring (PEM) system, a diverse array of environmental sensors positioned
all over the facility[1]. This is used for a multitude of purposes, including the data quality
report (DQR), which aims to veto segments of time by finding correlations between PEM and
DARM through statistical inference and sometimes also supervised learning. Supplementing
coincidence analysis between the two detectors, DQR prevents GW-like noise transients from
being falsely categorized as events.

Both detector livetime and detection range can be increased by figuring out how to decouple
environmental noise from DARM. Directly coupling noise, found by basic coherence, has
been already addressed, but the complexity of the detector causes many noise sources to up-
or down-convert. These require some more careful statistical correlation to identify, and are
sometimes not well understood.

Separating noise sources out of a signal can be considered a clustering problem in a space
covering different frequency bands in which noise appears. A previous LIGO SURF student
has evaluated several data clustering algorithms with respect to their ability to properly sort
out frequency elements of seismometer signals caused by specific earthquake events[2]. Both
the k-means algorithm, which aims to make clusters with low standard deviation, and the
DBSCAN algorithm, which minimizes overall inter-point distance in clusters, were evalu-
ated using multiple methods, including the Calinsky-Harabaz index and direct comparison
to earthquake times via time labeling of points, ultimately showing poor earthquake identifi-
cation. A long short-term memory (LSTM) recurrent neural network (RNN) seemed to work
much better, but due to small input sample size, this solution may have been be plagued by
over-fitting. Thus, it is imperative that a more robust frequency clustering mechanism be
designed for the PEM system.

2 Objectives

1. Find an algorithm or clustering approach which correctly identifies known noise events.

2. Use the results of (1) to create a clustering approach to discover previously unknown
noise correlations and/or sources.

page 1



LIGO-T1900287–v1

Figure 1: Schematic PEM map at the LIGO Livingston Observatory (L1). Shaded areas are
in vacuum.

Figure 2: Detector range at L1 seems to consistently reduce during the day (∼6am-5pm
CST), thought to result from anthropic activity. This can be as much as 10 Mpc for NS-NS
mergers.

page 2



LIGO-T1900287–v1

3 Approach

A program was written to take the spectral power of any PEM channel, in the form of band-
limited RMS (BLRMS) by summing in-band bins of a power spectrogram, with inspiration
from [3]. By clustering spectral bands of PEM channels, frequency conversions could be
accounted for.

A Python script was written to perform the an initial clustering approach, explained in
Section 4, with a variety of tunable parameters. It was validated on a regime with known
noise states, the seismometers, satisfying the first objective. No other clustering approach
was extensively investigated (Appendix B).

Unknown noise states in accelerometers and microphones were clustered using this approach,
to meet the second objective. (Section 5).

To glean the correlations between frequencies in clustered channels, a script was created
to visually present the power in frequencies in channels by cluster. This is explained in
Section 6.2.

4 k-Means Clustering with Histories

The k-means algorithm was used to cluster the two hours of minute-trend data preceding
each point in time. The coordinates of a clustered point were as follows:

{s0(t0), s0(t−1), s0(t−2), · · · , s0(t−n),
s1(t0), s1(t−1), s1(t−2), · · · , s1(t−n),
s2(t0), s2(t−1), s2(t−2), · · · , s2(t−n),

· · · ,
sm(t0), sm(t−1), sm(t−2), · · · , sm(t−n)}

(1)

with sj(t) the value of a clustered channel j at time t in its own units, e.g. a seismometer
velocity at time t. Each dimension could be thought of as “value of specific channel a
specific number of minutes ago”, allowing trends over time to be matched together in a
phase-agnostic way. This yields a cluster space of dimensionality (# of channels) × (# of
minutes of history).

Notably, the clustering endeavored by [2] lacked this history feature, using a clustering space
of dimensionality (# of channels) × (1). Instead of just finding times when the channels are
similar in value, the history clustering is sensitive to the shape of clustered features.

get minute-
trend data
from NDS

create input
matrix

compute
k-means
clusters

save labels

Figure 3: Clustering script flowchart. The clustering algorithm creates a time series of cluster
numbers, a label for each minute of clustered time.

page 3



LIGO-T1900287–v1

4.1 Sanity Checking with Seismometers

For a total clustering duration of 30 days, using the seismometers attached to ETMY, ETMX,
and ITMY, in minute-trend half-order-of-magnitude BLRMS bands from 30 mHz to 30 Hz,
the following known noise events were easily identified using a “2-hour history” k-means
method:

• earthquakes (0.01→ 0.1 Hz)

• microseism (0.1→ 1 Hz)

• anthropogenic noise (1→ 10 Hz)

A microseism is a faint seismic tremor caused by natural processes, such as waves of pressure
in the ocean, which happens over the course of hours. All human activity creates so-called
“anthropogenic noise”, and cars, trains, logging, and even footsteps can couple to DARM.
The noise floor at anthropogenic-noise-dominated frequencies noticeably rises during the day
and lowers during the night. Loud human-originated events, such as trains passing, stand
out over even the daytime noise floor.

Some differentiation between subcategories of events in the same frequency band but of
different timescales (e.g. earthquakes vs. wind; train vs. noise from cars) was lacking.

Figure 4: Seismic BLRMS near clustered earthquakes (above, purple, 30 mHz → 0.1 Hz)
and microseism (below, green, 0.1 Hz → 0.3 Hz)

The length of the history was initially thought to have an effect on the timescales of iden-
tifiable events; experimentation (namely, trying 30-minute and 6-hour histories on the same
data) showed that this is not really true.

The next idea was that there were too many different types of features in too large a space
for events with a small number of points, like the trains, to be separated out. The test was

page 4



LIGO-T1900287–v1

Figure 5: Seismic BLRMS from 1 Hz → 3 Hz. Using all bands, the k-means approach
clustered all anthropogenic features together (above, gray). Limiting the clustering space
allowed short events like trains (red, below) to be separated out from day/night variation
(blue, below).

re-run with only anthropogenic seismic BLRMS bands at the end stations, which yielded
very clear distinction between the anthropogenic noise types (See Figure 5).

5 Clustering of Unknown Noise States

Now that the clustering scheme was verified using known states of noise, it could be used to
find new relationships between PEM channels and DARM noise.

5.1 Microphones

A “2-hour history” k-means method was used to cluster 30 days of data from microphones in
the LVEA, XVEA and YVEA in BLRMS bands shown in Table 1. Two interesting “noisy”
states were identified: a relatively quiet, multi-hour cluster, and a quick, loud cluster. Tables
of the median percent increase of amplitude in certain BLRMS bands with respect to the
largest cluster in the run (representative of the noise floor) are shown in Table 2, and their
spectra in Figure 6.

The clustering was repeated with observing segments of L1:GDS-CALIB STRAIN included.
This produced approximately the same clusters as before, likely because segmenting of
DARM added weight to the MIC channels. The cluster corresponding to the same longer,
quieter “noisy” state occured during locked times, so its effect on DARM was examined. As
shown in Table 3, there was a slight average increase in DARM during the cluster. This
difference can also be seen in the representative spectrum (see Section 6.2) of the cluster

page 5



LIGO-T1900287–v1

DARM MIC ACC

10-13
18-22
22-27
27-29
29-40
40-54
54-65
65-76
75-115
115-190
190-210
210-290
290-480
526-590
590-650
650-885
885-970
1110-1430

10-28
28-32 (HVAC)
32-50
50-70
70-100
100-200

1-4
4-10
10-28
28-32
32-48
48-60
60-80
80-118
118-122
122-200

Table 1: Selected clustering BLRMS bands [Hz].

Hz 10-28 28-32 32-50
LVEA 109% 95% 176%
XVEA 87% 89%
YVEA 131% 83% 165%

Hz 32-50 50-70
LVEA 1112% 890%
PLUSX 1183% 1034%
PLUSY 1100%

Table 2: Percent increase tables (see Section 6.2) for clustered acoustic long, quiet (left) and
short, loud (right) states.

page 6



LIGO-T1900287–v1

Hz 22-27 27-29 29-40
GDS-CALIB STRAIN 1% 3% 1%

Table 3: Percent increase table (see Section 6.2) for the DARM component of the longer,
quieter acoustic cluster.

Figure 6: Representative spectra (see Section 6.2) for acoustic states mentioned in Sec-
tion 5.1. “Quiet” refers to the background “everything else” cluster. The orange cluster
seems to affect DARM very little.

(Figure 6). Nevertheless, the noise state does not impact DARM significantly enough to be
useful for sensitivity improvements.

5.2 Accelerometers

The “2-hour history” k-means method was used to cluster 30 days of data from various
accelerometers from all VEAs in BLRMS bands shown in Table 1. This was done in two
groups, one with mostly BSC accelerometers and one focusing on beamtube motion. The
primary feature that clustered out in both runs was a 60 Hz motion at the mid stations
increasing over half of a day. After making representative spectra (Figure 7), it was concluded
that this noise was due to the HVAC system turning on during the warmer period of the day.
Motor load causes electrical signals to downconvert slightly as they couple into mechanical
movement, so a peak at 58 Hz is characteristic of a fan. The fan movement did not couple
into DARM.

Hz 48-60 60-80 80-118
MY VEA BTUBE 256% 259% 123%
EY BSC5 Z 108%

Hz 48-60 54-65
MY 2100Y BTUBE 618%
GDS-CALIB STRAIN 38%

Table 4: Percent increase tables (see Section 6.2) for the 58 Hz accelerometer cluster. There
appears to be a correlation to DARM, but looking at the cluster spectrum (Figure 7) reveals
this to be due to random fluctuations in the 60 Hz line.

page 7



LIGO-T1900287–v1

Figure 7: Representative spectra (see Section 6.2) for the accelerometer noise state due to
the fans at the mid-stations turning on. This manifests itself as a peak at 58 Hz. There is
no coupling to DARM.

6 Developed Code Tools

Many times, scientists are inclined to quickly do their simple calculations imperatively. But
time and RAM are not infinite, and with a high-output experiment like LIGO the usual
kinds of scripts and operations do not suffice.

6.1 Streaming

One data-wrangling strategy is by programming with a “streaming” rather than “batch”
mentality. Many of the gravitational wave search pipelines have the ability to keep up with
new LIGO data as it is collected, doing their batch-style work in short chunks, or strides, as
the data comes along. This keeps the execution footprint of the program managable, while
allowing it to operate on an unending amount of data.

The Python package GWpy, used in this project, is the modern equivalent to LIGO’s Algo-
rithms Library, a set of common routines designed for LIGO data. Strangely, appending to
HDF5 savefiles, a streaming requisite, is not possible in GWpy without some lower-level cal-
culations using the libhdf5 wrapper directly and likely unintented GWpy keyword-argument
usage.

Two helper functions, write to disk and data exists, were defined in util.py for the
purpose of apppending a time series to an existing file and quickly checking the length of
saved data without reading it.

A Python module was written to implement the “streaming” idea for any given batch opera-
tion. One such task is the computation of BLRMS for channels that don’t provide it in DMT
frames. The BLRMS-generating function is an implementation of a general PostProcessor
interface, a python3.7 dataclass which is fed INI options upon construction (see Figure 8).

Any data processing function which maps an input channel to an output channel and has

page 8



LIGO-T1900287–v1

get data
from NDS
or savefiles

compute
strides

get next
stride

extract stride
compute

spectogram

add power
within

requested
bands

stitch stride
into .hdf5 file

read .hdf5
dataset shape

compute
offset

BLRMS PostProcessor

load INI
section

Figure 8: States of the “streaming post-processor” script.

tons of configuration parameters can take advantage of the module by implementing the
PostProcessor interface. Indeed, converting saved channels to minute-trend and caching
NDS downloads in the same format were easy last-minute tasks with this generic structure
in place.

6.2 Evaluation of Clusters

The clustering script itself was fairly straightforward, using the high abstraction provided by
scikit-learn. However, some thought was put into extracting meaning from the clusters.

A script was created to make power spectra for the clustered data representative of each
cluster. This is done by taking the median of the 1-minute power spectra for minutes
clustered together. An example of this is shown in Figure 10.

Taking the spectra of the clusters allows new states to be categorized without re-clustering,
and a way to easily identify frequency conversion that is happening during coupling.

In addition, the script can produce a table that shows which frequency bands are significant
in each channel during clustered times. This is done by taking the median percent increase

page 9



LIGO-T1900287–v1

read labels
locate base

cluster

locate non-
base cluster

segments

download
full-rate

minutes in
segments

take psd for
each minute
in the cluster

plot median

for each cluster

Figure 9: Roughly the states of the “representative spectra” script. The most complicated
overlooked detail in this figure is the caching of downloads. The stream writing functions
used in the BLRMS-generation script have been moved and are now included from a more
general location.

in value of the minute-trend BLRMS of the each channel in each band. The values in
Tables 2, 3, and 4 were all produced by this script, but handpicked from the rest of the
output for clarity.

Appendices

A Resampling

Downloading and saving full-rate data takes an exorbitant amount of disk space, especially
when only a portion of the frequency content is going to be used. This calls for a decimation
procedure to be applied to raw downloads before they are saved.

At CIT, Rana mentioned that the default low-pass filtering options in scipy’s resampling
function produce significant aliasing noise (> 1%) when downsampling by a large factor.
According to a test1 done by Eric Quintero, this issue can be remedied without sacrificing
runtime by using (1) a number of FIR taps proportional to the downsampling factor, rather
than the default fixed value, and (2) a non-default window (blackmanharris).

For a full-rate time series raw: gwpy.timeseries.TimeSeries, the fastest and best pro-
cedure for resampling to rate: int [Hz] would be something like

raw.resample(n=20*raw.sample_rate.value/rate, window=’blackmanharris’, rate=rate)

1see https://git.ligo.org/NoiseCancellation/GWcleaning/issues/2

page 10

https://git.ligo.org/NoiseCancellation/GWcleaning/issues/2


LIGO-T1900287–v1

Figure 10: The representative spectrum of a cluster corresponding to train-dominated times.
Notice that between 1 and 10 Hz, the seismic motion at ETMY (orange) is greater than at
the other VEAs by a factor of about 10.

B Evaluation of Non-k-means Clustering Algorithms

A test2 which swaps out the k-means algorithm for others implemented in sklearn was
executed to probe the geometry of the clusters. From a first glance, the Spectral Clustering
and Gaussian Mixture algorithms seemed to generalize better than k-means over different
feature timescales. However, algorithm upgrades are helpful only after tools for full cluster
analysis are in place, and due to time limitations they were not revisited.

References

[1] A. Effler, R. M. S. Schofield, V. V. Frolov, G. González, K. Kawabe, J. R. Smith, J.
Birch, and R. McCarthy, Classical and Quantum Gravity 32, 035017 (2015).

[2] LIGO Document T1700198-v1

[3] aLIGO LLO Logbook entry 45374 by Gabriele Vajente

2https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

page 11

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

	Introduction
	Objectives
	Approach
	k-Means Clustering with Histories
	Sanity Checking with Seismometers

	Clustering of Unknown Noise States
	Microphones
	Accelerometers

	Developed Code Tools
	Streaming
	Evaluation of Clusters

	Resampling
	Evaluation of Non-k-means Clustering Algorithms

