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Abstract

LIGO interferometers used to detect gravitational waves achieve extremely high
sensitivity through precise angular control of suspended optics that direct the laser
beam. A host of sensing techniques, ranging from optical levers and wavefront sensors
to suitably positioned quadrant photodiodes are used to detect the angular position and
deviation of optics. This work attempts to introduce the use of Gigabit Ethernet (GigE)
cameras capturing images of light scattered from optics to determine the position of the
laser beam on the optic. A number of approaches based on tools from image processing
are employed to discern the motion of the beam spot from video. They are found to
be unreliable and discarded in favour of convolutional neural networks which can, in
theory, learn any complex, non-linear mapping. These are trained on data generated
at the 40m laboratory at Caltech and the results are analysed. Future work will rely
on the use of data augmentation using conditional GANs to train networks and explore
the utility of GANs for this task.

1 Introduction

Interferometers at LIGO possess extremely high sensitivity to be able to detect gravitational
waves. The interferometers rely on being able to make extremely precise strain measurements
using a laser beam resonant in the optical cavitites of the interferometer. However, this
also makes them highly susceptible to noise and makes keeping the system locked and in
observing mode an incredibly challenging task. Keeping the system in lock and achieving
high sensitivity requires that the laser beams in the system be incident at particular positions
on the suspended optics which have been determined to be favorable. Even miniscule angular
motion of an optic will lead to a shift in the position of the beam spot on the suspended optic.
Deviation in the angular position from the desired set point can arise from various sources
of noise ranging from tectonic and oceanic movements to nearby electronics to other human
activities that couple into the suspension used to isolate the optics and cause movement
along multiple directions.

Consequently, systems that can accurately detect the position of the laser beam spot on the
optic need to be developed to be able to discern any displacement of the laser beam spot
from the ideal position. Such measurements can in turn be used for precise angular control
of the suspended optics such as the mirrors used in the interferometer. Several techniques
such as the use of Quadrant Photodiodes (QPDs henceforth, see Figure 4) or angle to length
coupling have been utilised to achieve this task of beam spot position determination. These
are discussed in greater detail in Section 2. A QPD is placed behind an optic and laser power
transmitted through the optic is incident on it. The position of the beam spot on the QPD
can then be determined as described in Section 2 which serves as a proxy for the position of
the beam spot on the optic. Similarly measurements of angle to length coupling can be made
by applying a dither to the optic and studying the length signal [16] to determine the position
of the laser beam spot. While highly effective, both these techniques have their drawbacks.
For instance, the QPD can not be positioned behind all optics oftentimes due their setup,
one example being the beamsplitter. Further, to make angle to length measurements, one
must dither the optic which injects noise into the system. Continuous measurement of beam
position then requires constant injection of noise into the system which is not feasible.
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In this work, an attempt is made to develop a non-invasive beam spot tracking system that
relies on video data obtained using Gigabit Ethernet (GigE henceforth) cameras [10] set
up to monitor a specific cavity. These cameras collect video data of light scattered from
the surface of the optic due to surface roughness and point scatterers. Image processing
algorithms are then developed to detect the position of the laser beam on the optic from the
video data. These algorithms will take as input the video data collected by the GigE camera
and output the position of the beam spot on the optic as a function of time. The GigE
camera data provides information regarding the entire cavity in contrast to optical levers
which, while highly useful, are local sensors and detect only the motion of a specific optic.
Further these can be set up to monitor optics such as the beamsplitter the position of the
laser beam on which can not be studied using a QPD. GigE cameras are used because they
have very low latency and a high dynamic range1.

This work focuses on using deep learning techniques to determine the position of the laser
beam spot on the optic. Two simple techniques- centroid detection and contour detection-
are used to determine the position of the beam spot. Their failure on real data collected
from the set up GigE camera and the conclusions drawn prompt the transition to the use of
Convolutional Neural Networks which in theory can learn any complex non-linear mapping.
This document details the entire pipeline starting with data collection and concluding with
the test of the neural network on unseen test data. Work done to simulate data to train
neural networks on is also presented.

Figure 1: A schematic of a Fabry Perot cavity depicting the reflection of light off of a test
mass and its subsequent focus and capture on the setup GigE camera

One extension of this work is to integrate the functional beam position tracking system into
a feedback loop to control the angular position of the optics and center the beam spot.
A typical control loop employing feedback control is illustrated in Figure 2. The dynamic

1https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca640-120gm/
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system or the plant is an electronic or mechanical component whose output needs to be
monitored and made to match the input reference. In this particular case the plant is a
suspended optical component such as a mirror whose pitch and yaw motion needs to be
controlled. The feedback sensor is used to monitor the behaviour of plant and provide the
information necessary to produce the desired control signal to the controller. In the case
of the optical lever system used for angular control, the working of which is elucidated in
greater detail in Section 2, this is a quadrant photodetector that tracks the position of the
reflected laser beam. In this work, the GigE camera is proposed as an alternative sensor.

+
Reference

input Error
System 

Controller
Dynamic 
System

System 
input

System 
output

Feedback 
sensor

Measured 
Output

-

Figure 2: A typical feedback control loop

Section 2 presents the camera setup and more details of the functioning and use of QPDs.
Following this, details of attempts to simulate data resembling real video data from the GigE
are presented in Section 3. Section 4 presents the three approaches used for the purpose of
laser beam spot tracking- two based on techniques using the Python library OpenCV [5]
and the third using neural networks- and discusses the outcomes and attempts to provide
explanations for the same. Extensions to this work are discussed in Section 5 followed by a
few concluding remarks. It is worth noting that while the eventual goal is to discern motion
of the order of a micrometer (ideally when no external force is deliberately applied to the
optic and when it is ostensibly stationary), this work only accomplishes tracking of beam
spot motion of the order of a millimeter and is consequently only a step in that direction.
Therefore, Section 5 also presents untried techniques that can be used to advance this work.

2 Setup

The algorithms developed in this work take as input video data and process it frame by
frame to output a series of position values corresponding to the X and Y coordinates of the
beam spot on the optic. The first two approaches use remarkably simple techniques and are
based on methods such as center of mass calculation, thresholding [13] and contour detection
[14]. They require data in order for parameters to be tuned and to verify the effectiveness
of the algorithm. The deep learning approach is inherently data driven and reqiures that a
sizeable amount of data be collected to train CNNs effectively and to test their performance.

All the data used in this work is either simulated or obtained from the camera set up in the
40m prototype interferometer laboratory at Caltech. The setup of the camera is shown in
Figure 3. The GigE camera used for this work is installed at a viewport of the MC2 optic of
the Input Mode Cleaner (IMC) cavity. As seen in Figure 3, light scattered by point scatteres
and due to the surface roughness of the curved optic is incident on an angled mirror which
directs this into the viewport. The light then passes through a telescopic lens system that
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focuses the image of the laser beam spot on the camera sensor. The exposure time of the
camera can be adjusted using available software2. The data obtained from this GigE camera
can be used as the input to any of the algorithms.

Figure 3: Setup of the GigE camera at the MC2 optic of the IMC

In the case of the deep learning based approach, it is also necessary to possess true labels
which a network can be trained against. As described in Section 1, the readings of the QPD
are used as the true position (or rather a proxy for it) of the laser beam spot. The quadrant
photodiode consists of four photodiodes which are arranged to form the four quandrants of
a coordinate system as shown in Figure 4.

If the incident laser beam produces outputs say A, B, C, D (see Figure 4) from the four
quadrants, then they can be used to calculate the position of the beam using the following
equations [8]

x =
B +D − A− C

A+B + C +D
(1)

y =
A+B − C −D

A+B + C +D
(2)

where x and y are the X and Y coordinates of the laser beam spot with respect to the QPD
coordinate system. The time series of these x and y values corresponding to the frames of
the video forms the labels of the training data. Section 5 discusses the need for an alternate
source of true labels.

In the preliminary portion of the work, data collected in [10] is used to train CNNs. Here,
optical lever (Oplev) readings are used to train the networks as opposed to QPD readings.

2https://git.ligo.org/40m/GigE.git
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A B 

C D 
x

y

Figure 4: Illustration of a four quandrant photodiode

Optical levers capture the angular motion of a specific optic. Figure 5 depicts a simple
optical lever consisting of a fiber coupled diode laser, quad photodetectors to determine
beam location and displacement and structural pylons to mount the necessary hardware.

Receiver

Pylon

Target

Source Lever length L

Figure 5: Design of an optical lever

In an optical lever, a laser beam is projected onto the suspended mirror and the system
structured such that the reflected laser beam is incident on the QPD. The system is calibrated
such that the output is zero when the beam is centered perfectly on the optic and the mirrors
are aligned. However, if the suspended mirror rotates through an angle θ, then the reflected
beam rotates through an angle 2θ. This is shown in Figure 6.

The position of the reflected beam can then be obtained using Equations 1 and 2 which help
determine the position/deviation of the suspended optic.
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Laser
Mirror

L

Quadrant
Photodiode

dθ

dx = 2Ldθ

Figure 6: Angular deflection of the mirror and reflected beam [9] in an Oplev

3 Simulating a beam spot

As discussed in Section 1, scattering results in the producton of a beam spot on the camera
sensor which can be used to determine the angular motion of the suspended optic. The
laser beam is expected to display Gaussian intensity variation. While abundant data is
available for image processing, it might not always be labelled and it might sometimes just
be more convenient to be able to generate data at will. This is why an attempt is made
at simulating data. Videos of the beam spot motion are simulated by generating successvie
grayscale frames consisting of pixels whose intensity varies as a two dimensional gaussian
with a constant variance for a given simulation and whose mean varies in a pre-determined
manner. Figure 9 shows two such simulations at different frame resolutions.

frame number: 0

(a)

frame number: 0

(b)

Figure 7: Frames from the simualated data at resolutions of (a) 64 x 64 (b) 256 x 256

The motion of the beam spot is centered about the middle of the frame and can be sinusoidal
or random. Figure 8 provides an example simulated motion of the beam spot using four
constituent sinusoidal signals.

Further, uniform random noise is added to the images or frames to make the data similar to
real data obtained from various cameras set up. While this constitutes image level noise, the
motion of the beam spot itself can possess some inherent randomness. This is accounted for
by adding numbers drawn from a uniform distribution to the mean of the gaussian in every
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Figure 8: A plot of the motion of the center of the beam spot in which the y coordinate is
not varied and the x coordinate follows motion caused by the combination of four sinusoids

frame thereby introducing some randomness in the motion. Figure 9a results from adding
noise (random numbers generated between 0 and 40, which is about a sixth of the maximum
intensity value of 255) to the image in Figure 7a. Figure 9b depicts the motion after addition
of image level noise and Figure 9c the motion of the spot center after introducing randomness
into beam spot motion. All the simulation is done using the NumPy [6], Matplotlib [7] and
OpenCV libraries.

Figure 10 includes frames from actual data of the beam spot that needs to be tracked. The
video data from which Figure 10a was obtained is saturated and was only used to briefly
test the method described in Section 4.1.2. The data from which Figure 10b was obtained
was collected as part of the work done in [10]. Before the completion of the setup in Figure
3, this data was used to test the methods presented in Sections 4.1.2 and 4.2.4 and perform
preliminary checks for the written code. However, all the results presented henceforth are
based on the data whose frames look like Figure 10c. This data was obtained from the setup
in Figure 3 as described in Section 4.2.2. All three types of available video data are presented
here to draw a comparison between the nature of the data simulated and the actual data.

It is evident that the efforts presented here are simply a basic attempt to simulate the physical
system. A more sophisticated simulation must capture a highly non-linear and complex
process accounting not only for the Gaussianity of the laser beam intensity profile but also the
surface roughness of the optic which is characterized by the BRDF. Consequently, this must
also take into account the angles of incidence of the laser beam and the angles of observation.
It must also factor in point scatterers present on the surface of the optic which lead to bright
spots in the captured image. The effect of point scatterers is characterized by the total
integrated scatter which is modelled as a series of impulses. This discrepancy between the
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frame number: 0
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(c)

Figure 9: (a) A frame from the video created after the addition of noise (b) Variation of the
coordinates of the center with only image level noise (c) Variation of the coordinates of the
center with both image level noise and randomeness in the motion

frame number: 0

(a)

frame number: 0

(b) (c)

Figure 10: Frames from actual data
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simulated and real data is particularly significant when evaluating the performance of the
tracking algorithms as they perform extremely well on easier, simulated data but fail or need
to be modified extensively to perform well on real data. An alternative to this approach of
hard coding the physics of the problem to obtain simulated data is discussed in Section 5.

4 Beam spot detection

The problem of the spot detection can be tackled in multiple ways. The first is to use
traditional image processing tools which are motivated and discussed below. Such methods
are simple, interpretable and do not require massive amounts of labeled data. However, a
degree of hard coding is required and even after performing well on simulated data, they
may not transfer to real data in an obvious manner. The second approach is data driven and
employs neural networks to detect the motion of the beam spot. The network is trained on
individual frames of the video of the beam spot motion with the labels being the position of
the beam spot in that frame. This approach is however very susceptible to overfitting. The
following section describes the use of traditional algorithms to detect the beam spot motion.

For all the attempted approaches the signal to noise ratio (SNR) is used as a metric to
evaluate the performance of the algorithm. The SNR is computed as the ratio of the power
in the actual (true) position time series to the power in the error between the true and
predicted values and is defined as below

SNR =

∑
i

y2i∑
i

(yi − ŷi)2
(3)

where yi is the actual position at the ith time instant and ŷi the predicted position. In the
case of the techniques described in Section 4.1.1 and 4.1.2, the predicted labels are with
respect to the image frame coordinate system and are determined in terms of number of
pixels. For the sake of comparison both the time series are normalized to one as can be
seen in Figure 11 before computing the SNR. In the case of the CNN based method, the
true labels (from the QPD) lie between 0 and 1 in arbitrary units. A separate experiment3

was carried out to determine the calibration factor between the output of the QPD and the
actual displacement of the laser beam spot on the optic. While the predictions themselves
lie between 0 and 1, the calibration factor is used to determine the true displacement. The
higher the SNR, the better the performance of the algorithm. The SNR tends to infinity
when the true and predicted values match exactly.

4.1 Traditional image processing

Two methods are used to determine the centroid of the beam spot. Both these techniques are
not data driven and do not make use of neural networks. They both compute the position
of the centroid on with respect to coordinate system of the image frames and it is assumed

3https://nodus.ligo.caltech.edu:8081/40m/14804
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that knowledge of the geometry of the system will allow for calculations of the position of
the laser beam spot on the optic.

4.1.1 Centroid detection

From observation of Figures 9a and 10 (grayscale images), it is evident that the intensity of
the beam spot is centered around a particular spot which serves as an approximate centroid
of the beam spot. Therefore, the first method attempted was a simple center of mass
calculation. Here, the centroid is computed as a weigthed sum of the pixel coordinates
with the the pixel intensity values serving as weights. Dark pixels will automatically not
contribute to the calculation as they have values close to 0. The X and Y coordinates of the
centroid can be computed as given below:

Xcentroid =

∑
pixels

Xpixel × (pixel value)∑
pixels

(pixel value)
(4)

Ycentroid =

∑
pixels

Ypixel × (pixel value)∑
pixels

(pixel value)
(5)

This was applied to data (of Figure 10c) at three different stages- raw unprocessed data, data
on which median blur [12] has been applied and finally data processed using a median blur
and then thresholding [13]. Applying median blur to an image with kernel size of n replaces
each pixel with the median value of the pixels lying in an n × n square centered around
the pixel. Thresholding as used in this approach replaces all pixels above a specified pixel
value by 255 and those below it by 0. This algorithm is tested on data which is collected as
described in Section 4.2.2. The results are presented in Figure 11.

The SNR improves slightly with the application of both thresholding and median blur.
However, the predictions are a very poor approximation of the true labels as is visually
evident. This is corroborated by the fact that the SNR is quite low- in comparison to the
results obtained in Section 4.1.2 and 4.2.

4.1.2 Contour detection

The intensity variation of the beam spot is Gaussian and in the simulation, it is perfectly
so. Therefore, it follows that the intensity contours of the spot are circular. Consequently,
tracking the centroid of the beam spot reduces to determining this contour and then tracking
the centroid of this contour. This can be done in the following sequence of steps. First, the
images are converted to binary by thresholding. Here, a global value of threshold (127) is
used as the threshold. All pixel values greater than this threshold are pulled up to 255 and
the rest suppressed to 0. This results in a binary image useful for contour detection. This
results in a circular contour that is used to determine the centroid of the beam. Initially,
attempts were made to detect the circular boundary using Hough circle transform. However,
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Figure 11: Center of mass tracking for GigE video from MC2 viewport with an applied dither
of 0.2 Hz with three kinds of preprocessing

this approach resulted either in no detection or detection of spurious circles. Consequently,
contour detection algorithms in OpenCV were used to determine the contour of the beam
spot.

The centroid can then be found and this is the center of the gaussian beam spot. This works
well in the case of simulated data, particularly in the case of data without noise as can be
seen in Figure 13. As is evident, there is no error in prediction in the case of the y coordinate
of the center. There is an error of ≈ 2% in the predicted x coordinate. The predicted and
actual coordinates were normalized for the sake of comparison. This also gives us an idea of
the noise threshold in the case of simulations without noise. One can expect the algorithm
to make perfect predictions when a video in which the spot is absolutely still is provided.
This data corresponds the simulation of Figure 7a

Adding noise introduces error in the predictions. Error is simply defined as the difference
between the predicted and actual motion once both have been normalised to one. It does
not affect the predicion of the x coordinate along which there is well defined motion but has
significant impact on the prediction of motion along the y direction along which no motion
is simulated. This can be seen in Figure 14 which corresponds to the simulation in Figure
9a. The error subplot for the x direction gives one the impression of there being large error.
This is however misleading as it corresponds only to an error of at most 2 pixels in the actual
prediction.

Finally, Figure 15 provides details of the tracking when the motion of the beam spot itself is
slightly random. Here, numbers drawn from a uniform distribution between 0 and 4 (nealy a
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frame number: 0

(a)

frame number: 0

(b)

frame number: 0

(c)

frame number: 0

(d)

frame number: 0

(e)

frame number: 0

(f)

Figure 12: Contour detected in the video corresponding to frames in (a) Figure 7a (b) Figure
7b (c) Figure 9a (d) first frame for simulation with both image level noise and randomness
in motion (e) Figure 10a (f) Figure 10b
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Figure 13: Comparison of the actual and predicted motion for simulated data
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Figure 14: Comparison of the actual and predicted motion with image level noise for simu-
lated data
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eleventh of the amplitude of motion, 45, as can be seen from Figure 8) are added to the mean
of the gaussian beam spot at every time instance. As can be seen from the superimposed
graphs of the motion, the algorithm does a farily good job of tracking the position of the
beam spot. It is worth noting that the tracking of the algorithm becomes significantly worse
as the amplitude of motion decreases.
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Figure 15: Comparison of the actual and predicted motion with image level noise and ran-
domness in motion for simulated data

This technique was also tried on real data as shown in Figure 12f. The motion of the beam
spot is expected to be sinusoidal along the Y direction corresponding to the pitch motion of
the optic. However, the predicted motion resembles sinusoidal motion only superficially and
further displays a phase difference with respect to the original motion. This is made use of
in Section 4.2. Further, the predicted motion displays an unexpected degree of digitization
in that there exist many groups of consecutive frames for which the algorithm determines
the same position of the centroid. This is surprising and merits attention considering that
the centroid is computed as the ratio of the first moment and zeroth moment and therefore
is expected to vary smoothly.

Finally, this method does not work for the data of Figure 10c. In fact, no relevant contours
were detected when this data was used. Other operations such as dilation and erosion had
to be used to detect the necessary contours. It is this failure that motivates the next body
of work.
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Figure 16: Performance of the proposed algorithm on noisy real data (presented in Figure 12f)
corresponding to pitch motion of optic, position units normalized to make the comparison
between oplev readings and algorithm predictions possible

4.2 Neural networks for beam tracking

Results like those presented in Figures 11 and 16 indicate that simple, unsophisticated tech-
niques will not suffice for the task of determining the position of the beam on the optic from
a GigE camera feed of scattered light. This mapping is a complex function dependent on
several processes as described in Section 3. The aforementioned techniques fail for several
reasons. The first being the assumption of Gaussianity. While it is true that the intensity
profile of the laser beam is Gaussian, following reflection by the surface of the optic and
due to point scatterers, the profile only remains approximately Gaussian which is no longer
sufficient for the above methods to funciton robustly. Further, these techniques were only
successful with saturated data and large amplitudes of motion. This is of little consequence
if the motion to be detected is of the order of a few micrometers. In such cases, subpixel ac-
curacy is required and can perhaps be achieved using the information presented by intensity
variation of pixels rather than the motion of the cluster of bright pixels seen in Figure 10.
Theoretically, such a complex and obscure mapping can be captured by a neural network.
Figures 17 and 18 present the pipeline for training and testing a neural network.

4.2.1 Neural networks

Neural networks are, at the simplest level, mappings from a set of inputs x to a set of outputs
y. Training a neural network involves learning a mapping f such that

y ≈ f(x;W, b) (6)
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Test mass GigE Neural network
Predicted positionInput motion

Loss 
function

Beam spot 
motion Video

Optimizer

QPD
True beam spot position

Figure 17: Training a neural network to determine angular motion

Test mass GigE Neural network
Predicted motionInput motion Beam spot 

motion Video

Cause

Figure 18: Neural network at test time

where W and b parametrize the function. As the mapping f is only approximate, an objective
function is used to determine the goodness of this approximation. In the case of beam spot
tracking which is a regression task, mean squared error defined as

MSE =
1

n

n∑
i=1

(yi − f(xi))
2 (7)

where n is the number of examples/data points under consideration. The parameters which
determine the mapping are obtained by treating this as an optimization task in which the
objective function is minimized. In this work, this is done using the optimization algorithm
ADAM [4]. Further, convolutional neural networks are used for the task of laser beam spot
tracking as they are better suited for image processing tasks than are feedforward neural
networks [15]. Some efforts to use feedforward neural networks for this task are presented in
[10].

While neural networks can produce excellent results, this is congingent on the type and
amount of data collected for the training. The details of the data collected are presented
below.

4.2.2 Data collection

The data collected was primarily video data of the scattered light from the MC2 optic with
a frame resolution of 640 × 480. Exposure time was set to 500µs. This was done to ensure
that the image was not saturated and was verified by counting the number of pixels with an
intensity value greater than 240 and ensuring that the percentage of the same did not exceed
1.5%. A plot of the saturation percentage variation with time is presented in Figure 19 for
a fraction of the time for which the data was collected. Selection of the exposure time is an
iterative process. Too high an exposure time leads to saturation and bleeding which might
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then lead to loss of finer details such as variations in intensity which correspond to miniscule
beam spot motion. Too small an exposure time leads to certain artefacts not being caught
by the CCD sensor at all.
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Figure 19: Percentage of pixels with intensity over 240 for 10s of the training data

In order to collect data, the MC2 optic is first given a sinusoidal dither. While an ideal
tracking system should be able to detect motion at all frequencies and all amplitudes however
small, this work uses only a dither of 0.2 Hz. Data is collected for a total of 210s at 25
FPS. The X and Y coordinate readings from the QPD suspended behind the MC2 mirror
shown in Figure 3 are used as the true labels for the data. The readings lie between 0 and
1. These are obtained from the channels ”C1:IOO-MC TRANS PIT ERR” and ”C1:IOO-
MC TRANS YAW ERR”. These are 1kHz channels and yield 1000 readings per second.
However, in order for these to serve as the labels for the individual frames, the entire time
series is resampled to 25Hz.

The data is fed frame by frame to the network and a prediction of the beam spot position is
made. Consequently, the label at the ith time instant must correspond to the frame recorded
at the same moment. Therefore, it is necessary to synchronize the frames with the QPD
readings. Two techniques were attempted for this. The first involved applying the contour
detection algorithm described in Section 4.1.2 and then discarding values from the predicted
and true value time series until the power in the error signal is minimized. If yj is the jth

value in the series of true values of the beam position (y-coordinate) following the resampling
and ŷk the kth predicted position, then the above procedure amounts to finding an m such
that
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m = argmin
m

1

n−m

n−m∑
i=0

(yi − ŷi+m)2 (8)

where n is the number of time instants for which data is available. A negative m implies the
removal of samples from the start of the predicted series and end of the original series. Such
a technique allows for two signals to be aligned very closely (compare Figures 16 and 20).
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Figure 20: Predicted and actual motion after advancing the predicted signal by 36 samples,
compare with Figure 16

However, it is very ad hoc and has some patent flaws. The first is that the underlying contour
detection algorithm is not very robust. The parameters for thresholding and other operations
need to be tuned every time new data is encountered. Consequently, this method is not used
for the final synchronization. As an alternative, the GPS time was noted for the first frame
of every video recorded and the aforementioned channel value readings obtained from that
time instant. This is more versatile as it is possible to record the GPS time with very high
precision irrespective of the kind of data being collected. Some more methods to tackle this
synchronization issue are presented in Section 5. Both normalized (by 255) and unnormal-
ized data were used for the network training and testing. Surprisingly, unnormalized data
produced better results. Each image frame in the video was cropped to 350 × 350 before
being fed to the network. This crop size was estimated by visually observing the cropped
video frames and ascertaining that the beam spot lay, even at the peak of its motion, within
the cropped frame. A more robust method of cropping is desirable, particularly if feeding in
640 × 480 frames without dimensionality reduction techniques such as PCA is not viable.

This work did not use simulated data for the training of neural networks. [10] presents
several experiments involving training of neural networks on simulated data.
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4.2.3 Architectures

The architectures experimented with are the ones presented in [11]. These primarily consist
of alternating convolutional and max pooling layers. The nonlinearity used was the rectified
linear unit (ReLU). The output and penultimate layers are feedforward layers, with linear
and ReLU activations respectively. A schematic for the architecture is presented in Figure
21.

350 x 350 x 1 348 x 348 x 64 174 x 174 x 64 172 x 172 x 64 86 x 86 x 64 84 x 84 x 64 42 x 42 x 64 64 240 x 40 x 64 20 x 20 x 64 25600

(a)

350 x 350 x 10 348 x 348 x 64 174 x 174 x 64 172 x 172 x 64 86 x 86 x 64 84 x 84 x 64 42 x 42 x 64 64 240 x 40 x 64 20 x 20 x 64 25600

(b)

Figure 21: CNN architectures for beam spot tracking with (a) framewise input (b) input
volumes

Both CNN architectures have an output size of 2- the X and Y coordinates of the beam spot
on the optic. The CNN architecture presented in Figure 21a takes as input a single frame of
the video to be processed and then predicts the corresponding position values. However, it
is also worth noting that the movement of the beam spot can only contain certain freqeuncy
components. The physics of the system ensures that, under normal circumstances, erratic
jumps do not occur in the position of the beam spot. Therefore, as shown in the architecture
of Figure 21b, the CNN is supplied with multiple frames as input with the hope that the
network will learn to capture the fact that high frequency components can not be present
in the beam spot motion. The CNN architecture presented in Figure 21b takes as input 10
consecutive frames and predicts as output the position corresponding to the foremost frame.

While using CNNs that take as input a series of frames is one way of introducing memory
into the system, another approach is to use LSTM networks which treat the beam spot
tracking as a sequence to sequence task with the input being, once again, a sequence of
video frames and the output being either a timer series or a single value corresponding to
one of the frames of the video. The architecture used was a encoder decoder model with
a CNN encoder that converts each image frame into a vector embedding that is then fed
to a LSTM unit. Experimentally, these were much harder to train and produced results
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(as measured by maximum deviation from true value and SNR) inferior to the simple CNN
based approach.

All networks are implemented in Keras with a TensorFlow backend. Dropout before each of
the dense layers and l2 regularization for the convolutional layers are used to avoid overfitting.
Batch normalization is not used while training the networks.

4.2.4 Training the networks

The networks are trained on a GPU (initially a GTX1060 then TitanX) to tune hyperpa-
rameters. The hyperparameters that can be tuned in this case are the learning rate, the
batch size, dropout ratio, number of epochs of training, type and size of preprocessing filter
used (usually median blur), number of frames in the input volume. A grid search is per-
formed to determine the optimal set of hyperparameters for the learning task. The results
are presented in Section 4.2.5.

4.2.5 Results

The network with the best performance from Table 1 is tested on 20s of test data. In Table 1,
hyperparameters such as dropout ratio, convolutional filter size appear to be constant for all
trials. However, these too were subject to the grid search and best results were obtained at
the presented values. The predictions for the Y coordinate position are presented in Figure
23. The SNR obtained for this is much higher than that obtained from the center of mass
computation. However, it is only 1dB greater than the results in Figure 22 that obtained
using the contour detection method. However, this method is much more general and holds
the promise of high accuracy even for small amplitudes of motion. While the motion tracked
here is of the order of a millimeter, more data and better hyperparameter tuning can possibly
lead to tracking of the motion of the order of a micrometer.
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Figure 22: Predicted motion of the beam spot along the Y axis using the method described
in Section 4.1.2, same as Figure 20
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Figure 23: Predicted motion of the beam spot along the Y axis

The learning curves for the training of the same network are presented in Figure 24. The
decline in the training loss indicates that the network continues to learn with each epoch.
However, for the corresponding choice of hyper parameters, the validation loss begins to
increase at the 25th epoch or so indicating that the network is beginning to overfit. This can
be addressed using a host of techniques discussed in Section 5.

5 Future work

From Figure 24, it is evident that there is some degree of overfitting. While dropout was
used as a part of this work, this can perhaps be rectified by using techniques such as early
stopping or L2 regularization for the weights. While these are available options, a far more
suitable course of action is to simply collect more data. The presented network was trained
on 3.5 minutes of training data collected within a span of an hour from the GigE camera
set up at the MC2 optic viewport as described in Section 2. However, this data corresponds
to motion at 0.2 Hz and at quite a large amplitude of about 3 mm. When the input to
the network is single frame as in Figure 21a, the frequency of motion ought not to matter
as the CNN is learning to predict a position from the pixel values of an image at a given
time instant. When fed an input volume as in Figure 21b and expected to capture frequency
information of the motion, training the network on data collected over a range of frequencies
is likely to increase its applicability.

A simple method to test this hypothesis is to first test the trained network discussed in
Section 4.2.5 on data collected at the same exposure time but with different dither frequencies
and amplitudes. It is expected that the network from Figure 21a will show no significant
difference in performance irrespective of the frequency shift as it has no memory whereas
the network which takes in an input volume will not generalize as well. Both networks are
expected to fail when it comes to smaller amplitudes of motion. On observing the results of
this experiment, new and much more data at different frequencies and amplitudes needs to
be collected for training. Ideally, the network ought to be trained on data collected when no
external force is applied to the optic.
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Figure 24: Learning curves for the training of the network whose output is shown in Figure
23

Another interesting question worth considering when collecting data is the suitability of the
QPD readings as the true labels. A network trained on these readings will inevitably be only
so good as these. One alternative is to use A2L readings to determine the position of the
beam spot on the optic as described in [16] and train a network against the same. This is
bound to improve the quality of the predictions of the network.

Further, the analysis presented in this work assumes that the data collected for network
training at one point in time is representative and accommodates all possible situations.
This is not necessarily true. For instance, this is based on the assumption that the set up
GigE camera does not move over time. When desiring high precision, even slight motions
of the GigE camera will change the nature of video data produced by the GigE camera
and therefore the output of the network. This can be tackled in two ways. The first is to
alter the nature of data used to train the network. From Figure 10c it is clear that the
image is zoomed in onto the beam spot. Alternately, data with the camera zoomed out
can be collected to capture features such as the OSEMs (optical shadow electromagnets)
in the image as has been done in Figure 10b. This might provide the network with points
of reference with respect to which the position of the beam spot can be determined. An
alternative is to collect data while moving the camera itself by small amounts to simulate
data generated when the mount of the camera is subject to motion.

Another method to create more data, specially to accommodate those situations for which
data has not been or can not be collected in a short amount of time is by enhancing the
simulation. The processes that need to be considered to enhance the simulation are described
in Section 3 and must factor in surface roughness, point scatterers and angles of observation.
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The endeavor is to identify all the parameters that will create images as close to that obtained
from the GigE as possible. This data can then be used to train the network.

Another method to create data is to use generative adversarial networks (GANs) which have
produced remarkable results in generation tasks and have successfully been used for data
augmentation. GANs consist of a generative network which generates data and an adversarial
network which distinguishes the generated data from the real data. These networks are
trained competitively and the end result is a network that takes in a noise vector to generate
image data. The problem of generating GANs for beam spot tracking requires the use of
conditional GANs. These take in a deterministic vector and generate data, in the simplest
sense, corresponding to that. Here, we want the generator to take in a 2 dimensional vector
of X and Y coordinates and then outupt an image frame resembling that which would be
produced by a GigE camera of a beam spot in that position. While they are tricky to train,
this effort will help identify what the limitations of GANs for this task are.

One issue discussed in Section 4.2.2 was that of ensuring a correct mapping between the
frames of the video and the data collected from the QPD. Two methods were presented for
this- one rather ad hoc method involving the use of the method described in Section 4.1.2
and another in which the GPS time for the first frame was recorded and the latter was used
throughout the work in Section 4.2. However, a far more reliable method is to synchronize
the clock of the GigE camera and that of the interferometer. This will allow the camera to
capture a frame at every clock edge maintaining synchronicity.

Further, the hyperparameters for the network presented in Section 4.2 need to be tuned to
assess if such architectures are suitable at all for this task before being dismissed. Other
architectures worth trying are those in which the input is a three dimensional volume on
which 3D rather than 2D convolution is performed. This too introduces some memory into
the system and might just help the network capture the idea that the beam spot can not
move at very high frequencies. One application of a beam position tracking system is in
control of the angular position of the optics of the interferometer a schematic for which is
presented in Figure 25. This requires that the network be implemented on suitable hardware
to achieve the necessary speed following which it needs to be integrated into existing or new
feedback loops to achieve precise control.

6 Conclusion

This work explored the problem of laser beam position tracking using camera feed from
Gigabit Ethernet cameras. The use of cameras in addition to existing methods was motivated
and the setup used for this work detailed. Multiple approaches for beam tracking were
attempted and it was determined that the use of neural networks is most appropriate for
this task. Neural networks are trained with hyperparameters tuned using a grid search and
beam spot motion at 0.2 Hz with an amplitude of about 3mm is tracked with maximum
error under 20%. Following this, the results are analysed and possible courses of action to
expand upon this work identified.
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Figure 25: Schematic depicting the scheme for angular control of suspended optics using
local sensors (optical lever system) and global sensors (GigE cameras)
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