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Why are the LIGO & Virgo data so complex?

* Because the detectors are so complex!

* We often show simplified diagrams of our detectors

* But they are orders of magnitude more complex than the simple diagrams suggest!

* Why? Because we are measuring displacements on the order of 1x102° meters ...

not so easy!

* Qur detectors push many different
technologies to (and beyond!)
their limits, making use of
an enormous range of experimental
techniques & tricks.

* aLlGO has around a dozen
major sub-systems, and hundreds

of smaller sub-systems.

GWOSC Open Data Workshop, Paris,
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Advanced LIGO data channels

* Advanced LIGO logs some 400,000 data channels (!) from dozens of sub-systems
and thousands of servo control systems, each with multiple sensors and actuators.

*Only ONE is the strain channel h(t), used for GW astrophysical data analysis
* All of the many engineering techniques and tools that go into our detectors serve one
key purpose: to “shunt” environmental and/or instrumental noises to any other channel

except the strain channel.

* This leaves the strain channel with minimal couplings to any “terrestrial” noises, while
still being fully sensitive to GW strain (the stretching of space between the mirrors).

* All those other channels exist to withess the various noises and help in improving the

isolation of the strain channel to those noises (i.e., reducing the coupling of terrestrial
noises to the GW strain channel).
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Advanced LIGO Servo Control
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One of the ~400K channels
a rather important one
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Advanced LIGO data channels

* Those other ~400K channels are digitized at sampling rates of 16 Hz, 256 Hz,
2048 Hz, ... 16384 Hz. The strain channel is sampled at f,,, = 16384 Hz (2% Hz).

*We use powers of two because we will study the frequency spectrum of the data
channels, using digital fast Fourier transforms (DFFTs),
which are faster to compute if the data samples are in groups of powers of 2.

*Data channels should have no appreciable frequency content above fyquist = fsamp/2-
* An enormous effort goes into understanding all those other channels, using them to
improve detector performance, and then boil them all down to a handful of
“Data Quality” (DQ) channels, with 16 Hz sampling (discussed later).
* GWOSC releases the h(t) strain channel and these DQ channels;

they are all that is needed by the LIGO-Virgo Collaborations, and GWOSC users,
for astrophysical data analysis.
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HLVG — four-detector network for GW170817!
“Strain noise amplitude spectral density”

[1186963218-1187049618, state: Ready]
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Observed signal durations (above ~30 Hz)

GW150914
LVT151012
GW151226

GW170104

GW170814 ——— A~V

GW170817
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LIGO/University of Oregon/Ben Farr




Time-scales of GW signals from BNS mergers,
BBH mergers, CCSNe, CWs, stochastic, ...
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http://ligo.org/detections/GW170817.php

Virgo beam pattern
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Finding the needle in the messy haystack

CBC signals are typically < 1 second in-band ([20-3000] Hz). We found 10 of
them in O1+02 = around 6 months of coincident (H+L) ovserving.
Needle in a haystack!

* It has been shown that, if a suitably precise model of the signal(s) of interest exist,
matched filtering, using the model as a template, is “optimal” for identifying weak
signals in Gaussian noise (Extraction of Signals from Noise: Wainstein and
Zubakov, 1962).

* This is true even if unknown model parameters (masses & spins) mean we have
not one template, but 100,000’s or more. (CW searches: ~10'3 templates!)

* The templates must be accurate over (potentially) very many cycles in-band!
* But aLIGO data are non-Gaussian and non-stationary — a big challenge!

* CBC detection pipelines used in LIGO & Virgo:
pycbc, gstlal, MBTA, SPIIR, ..

GWOSC Open Data Workshop, Paris, April 2019 ue;}?) 12



What do LIGO data look like?
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LIGO-Hanford h(t)
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from gwpy.timeseries import TimeSeries

t0 = 1134294133

hdata = TimeSeries.fetch open data('H1', t0,t0+20)
hdata.plot()

The data are far from Gaussian!

The noise is colored — much wider
Gaussian for low and high frequencies.
There are glitches (signal??) in there!

GWOSC Open Data Workshop, Paris, April 2019
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What do LIGO data look like, after bandpass?

LIGO-Hanford h(t)
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After bandpass, [10,1000] Hz, notches at 60™n:

Y Exam Ie W COde for band aSSIn . from gwpy.signal import filter_design
p g py p g bp = filter_design.bandpass(10, 1000, data.sample_rate)
notches = [filter_design.notch(line, data.sample_rate) for
line in (60, 120, 1890)]
zpk = filter_design.concatenate_zpks(bp, *notches)

hfilt = hdata.filter(zpk, filtfilt=True)

It’s looking more Gaussian...

Ah, but there are long non-Gaussian tails, due to the glitch (signal?)

All plots made by gwpy, pretty easy!
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hd,bins,other = plt.hist(hdata,bins=100) hdata.q_transform(frange=(25,200)).plot()
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LIGO data in the frequency domain

~ LIGO-Hanford h(t)
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Made with GWpy by Duncan Macleod. Code: https://qgit.io/gwpy-ligo-scattering-animation

0.5 second FFT; 5 averages covering 1.5 seconds; 50% overlap
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Calibrated Strain noise — in the frequency domain
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computed within ~5 s and broadcast to computing clusters
received by analysis pipelines to rapidly search for signals
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Calibrated Strain noise spectral lines

Calibration lines
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Combs of lines in LIGO data
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These combs are only visible when integrating over hours...

—
o
]
n
o
[

|

'hey used to be much worse, reduced by changes to electronics.
But the origins of, and fixes for, the remaining combs, are unknown!
They have negligible effect on transient signals like CBC mergers.
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O1 and O2 noise lines paper: Covas et al. (2017) arXiv 1801.07204
Instrumental lines catalog for LIGO-Hanford and LIGO Livingston: losc.ligo.org/o1speclines
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Detectors’ duty cycle, coincidence,

non-stationarity

02 Summary

LIGO waw observing segments
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Single interferometer [29.5%]
B No interferometer [24.1%]
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Glitches in LIGO data

Template-based matched filtering works “optimally” to find weak signals in stationary, Gaussian data...
* Butreal LIGO data is NOT exactly Gaussian or stationary ®
* Glitches can occur due to a variety of different influences, such as:
environmental disturbances; RFI; scattered light; control system instabilities; ...
* Glitch sources that have been identified, have been fixed / eliminated / reduced.
The remaining glitches have been more resistant to diagnosis / fixing; constant effort continues!
* Transient non-Gaussian noise fluctuations (glitches) can “ring up” a template filter!
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LIGO data are non-stationary!

Blip glitches

e The biggest contributor to the
transient GW search backgrounds

e Seen in both LIGO detectors (non-
coincident) ~1x/hour

 No known correlation with
iInstrument behavior or
environment.
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e Pollutes LIGO-Livingston data in a
critical frequency range (~50-500Hz)
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Visualizing glitches:
Time-frequency spectrogram
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The Q transform

S. Chatterji et al. CQG (2010)
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A menagerie of common glitch types

gravityspy.org Zevin et al, 2017, CQG
Citizen science: help us identify & classify glitch morphologies,
train machine-learning algorithms to recognize them
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http://gravityspy.org/

How to mitigate glitches

* Check auxiliary monitoring channels for environmental and instrumental causes,
and veto the effected data during such times (DQ vetoes).

* Require coincidence between multiple detectors, at observatories separated by

thousands of km:

- At - within light travel time
between the observatories
(10 ms between LHO and LLO).
Add ~5 ms for timing errors in match
between emplate and signal in noisy dat:

- AA, Ao - relative amplitude and phase
of observed signal at 2 detectors
consistent with astrophysical source

- Am - Signal morphology (governed
by masses) is consistent between
detectors — egq,
require exact same template.

GWOSC Open Data Workshop, Paris, April 2019 Liey]
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How are data quality segments defined?

Data quality vetoes require an auxiliary witness

e That auxiliary witness is required to be safe;
to (demonstrably) not be sensitive to changes in
spacetime strain

¢ \/eto segments were defined based on noise
sources knowr to couple to h(t)

¢ \/eto categories were determined for each type of
search independently depending on noise
contributors to that search’s background

e There are differences between CAT2 and CAT3
definitions between the burst and CBC
searches

GWOSC Open Data Workshop, Paris, April 2019 ue@?
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Auxiliary channels

We record over 200,000 channels per detector that monitor the environment and
detector behavior.

We can use these to help trace the instrumental causes of glitches that pollute
the search backgrounds.

» amplitude
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Physical environment channels
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Laser glitches - h(t) vs. microphones

H1.GDS-CALIB_STRAIN at 1164908667.360 with Q of 69.9 H1:PEM-CS_MIC_PSL_CENTER_DQ at 1164908667.360 with Q of 69.9
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Example of a data quality veto in O
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LIGO data quahty information

Available with the h(t) strain data via the GWOSC

Bit Short Name Description

Data Quality Bits

0 DATA data present

1 CBC_CAT1 passes the cbc CAT1 test
2 CBC_CAT2 passes cbc CAT2 test

3 CBC_CAT3 passes cbc CAT3 test

4 BURST _CAT1 passes burst CAT1 test

5 BURST_CAT2 passes burst CAT2 test

6 BURST _CAT3 passes burst CAT3 test
Injection Bits

0 NO _CBC _HW_INJ no cbc injection

1 NO_BURST_HW_IN]J no burst injections

2 NO_DETCHAR_HW_INJ] no detchar injections

3 NO_CW_HW_INJ] no continuous wave injections
4 NO_STOCH_HW_IN] no stoch injections

GWOSC Open Data Workshop, Paris, April 2019 Liegy 32



Data quality information

DATA (Data Available): Failing this level indicates that LIGO data are not publicly
available because the instruments or data calibration were not operating in an
acceptable condition.
CAT1 (Category 1): Failing a data quality check at this category indicates
a critical issue with a key detector component not operating in its nominal
configuration.

e These times are identical for each data analysis group.

- Times that fail CAT1 flags are not available as LIGO open data.

CAT2 (Category 2): Failing a data quality check at this category indicates times
when there is a known, understood physical coupling to the gravitational wave
channel. For example, high seismic activity.

CAT3 (Category 3): Failing a data quality check at this category indicates times
when there is statistical coupling to the gravitational wave channel which is not
fully understood.

Data quality levels are defined in a cumulative way: a time which fails a given
category automatically fails all higher categories.

Data quality categories are defined independently for different analysis
groups: if something fails at CAT2_BURST, it could pass CAT2_CBC.

GWOSC Open Data Workshop, Paris, April 2019 Lleg)
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The impact of data quality vetoes
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GW151226 analysis

== GWI151226

Network re-weighted SNR

LIGO-Virgo collaboration (2017) - arXiv 1710.02185

GWOSC Open Data Workshop, Paris, April 2019 Liegy

The false alarm rate of GW151226

improves by a factor of 567,

from 1in 320 years to 1 in 183000
years, with detector data quality

information!
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More glitch rejection tools:

Require consistency between signal model and observed data in various dimensions

* SNR contribution by frequency band — time-frequency “Allen” x?
divide the template into frequency bands of equal expected power.

* Template autocorrelation function x?2
Check for expected fall-off of SNR as template is shifted away from signal

le-21 li -
° ' — o)

—  {elth

H1

15 le-19

15}

10}

P~ 1

15

05}

Strain
Strain

5 10?
Tme Freniiancyv (H7)

Ml W B
~ 7 \" i "‘x\ A
X X — /N AP AN
Z ns —004  —002 000 0.02 0.04
GPS time relative to 1126259462.4204 (s)

GWOSC upen pata vvorksnop, Faris, April 2u1Y uegy
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GW150914 SNR, X2, Pes

22 . .

xxx H1

L1

Chi-squared weighted SNR

—0.04 —0.02 0.00 0.02 0.04
GPS time relative to 1126259462.4204 (s)

Abbot et al. 2016 arXiv:1602.03839
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Generalized detection statistic

* Re-weight the SNR (aka p) by time frequency x? - form p (p, X°) —
a new detection statistic to replace SNR

* Normalized so that if x?/ndofis<1,p=p

* Suppresses detection statistic for glitches, keeps it as a measure of
"loudness" for real signals, to better distinguish between them.

» 102

102

+++ Sim. signals in software
oO0o Sim. signals in detector
« *« Background

10

False alarm rate (yr')

P P < 10-2
GWOSC Open Data Workshop, Paris, April 2019 Lﬁ%y 37



O2 Blip-glitch killer

* Check for excess power at frequencies above those expected from template

* For each trigger, look for excess power at frequencies beyond where the
template waveform should have ended.

* Tiles of Sine-Gaussians with configurable Q and central frequencies

H1:DCS-CALIB_STRAIN_CO1 - loudest 20 triggers by newsnr - max newsnr = 12.39 (red curve) )
10°

. 10?

* Define anew X2k 3

(A. Nitz, CQG 35,

:

‘ 101'5

: 3

§ Excess Power After 5 Uﬁ

g a CBC waveform ]

0 would end : £

1012

End of CBC :

Waveform :

A

Time - 1167835662.000 (5)

GWOSC Open Data W¢ «w & % & % 5 s 5w °



Veto safety — we should not be

vetoing the signals we are looking for!

Inject simulated signals

(with wide range of SNRs, distances, masses, etc)
into real LIGO data (assumed to be all noise, no
signal!) over the full observation time.

Run through detection pipeline, determine
“loudness”.

Compare with background distribution, estimate
False Alarm Probability (FAP) and False Alarm Rat
(FAR).

Events with low FAR (or high Inverse FAR, IFAR)
are “detected”.

From this, measure detection efficiency vs distance
From this, compute sensitive volume.

For N detected events, astrophysical rate is

R =N/VT.

We can compute this for different source classes
(BNS, NSBH, BBH, ...).

Decisive Optimal SNR

Chirp Mass

GWOSC Open Data Workshop, Paris, April 2019 Lic?y

—
o
o

False Alarm Rate (yr '), Inclusive
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Calibrating GW detectors

ALgree = ALy (t) — AL, (t)

h(t) _ Aszee (t)

“differential arm length change” (DARM_ERR) is the uncalibrated strain:
DARM_ERR(t) = R « Lh(t) + n(t) = R = [Lh(t) + ny(t)]

R is the “detector response” to strain. n, are all the noises, referenced to strain.
GW detectors are engineered to be (ideally) Linear and Time Invariant (LTI),
So that R is most naturally a constant function of frequency, not time.

DARM_ERR(f) = R * Lh(f) + @i(f) = R(f)X[Lh(f) + 7t (f)]

Calibration is about turning DARM_ERR(t) into h(t) using R(f) (and ignoring n(t)!).
lts about the response to signal, it’s not about noise at all (that’s DQ).

GWOSC Open Data Workshop, Paris, April 2019 é% 40



What is the DARM servo loop?

Differential arm (DARM) control system DARM displacement:
Low Noise
Electrostatic —,. CX /A/
Actuator [P =N =
End Test ot D\?‘/;) \\// 1 h(t) L ALfree (t)
MassY ¢ —
Upper -
In?([e3 rmediate ’ ‘ Op l L
Mass (U) ‘
e H ]]\ e Need to hold the optical
S| Senulimate Doy, cavities (XARM, YARM,
Mass (P) D/ | | MICH, PRC, SRC) on resonance
/A f Electromagnetic
Actuators
i l | e Quadruple pendulum
Massv | Test Mass (T) ]} suspension systems
Active seismic isolation systems
- " Not enough —
Laser - e g N\ DARM displacement must be
npu n High Ran
i e eroune  further controlled!

To
GW Readout Port *

C. Cahillane et al. 2017 PRD 96, 102001
GWOSC Open Data Workshop, Paris, April 2019 Lﬁ?y 41
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The DARM Control Loop

Sensing
> C I > derr
Digital
L Filter
______________________ A e |
< Lctrl

<|I < > detrl

Actuation

T

Viets et al., arXiv 1710.09973 , Class. Quantum Gravity, 35, 095015 (2018).
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https://arxiv.org/abs/1710.09973

What does calibration do?

Differential arm (DARM) control loop B. P. Abbott, et al. 2017 PRD 95 062003
. - ———=—===1n
) 1] g Model the
d | response
— o | (both C

and A)
as best we

| |
| |
~ Digital i : can!
Q Filter | : »

I

I

|

I

|

|

|

| —— -
| I’Actuatmn d (
! \ ctrl

: o-lm 4—##@4 i |
| b !
|

|

|

|

’ (PC)

Recover
AL free

AI—free '
IA(model)‘ .
I x..‘__.__“ —_— : A
CTBew . E L
Realtime interferometer control Calibration pipeline
1
ALfree(f) — @derr(f) T A(f)dctrl(f) h(t) B ALfree (t)
ALfree * derr + A( ) * dctrl( ) L
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Time dependent correction factors (TDCFs)

e |f Sensing (C) and Actuation (A) models are perfectly known at any
given time, there’s no systematic error (there's still statistical
uncertainty).

1

ALfroo — derr + Amodcldctrl
CVmodcl

e But the model parameters are imperfectly modeled, and also
changing slightly — due to charge accumulation around the
test/reaction mass, optical alignment drifts in the arm cavities, etc.

e Use high SNR calibration lines, track temporal variations in DARM
loop model parameters, and correct them

1 |
ALfrec — derr + RA(t)Amodeldctrl
o ( modcl .
_ See Viets et al. 2018 ﬂ o I'ncludingTactors for 3
(arXiv:1710.09973), T1700106 for details | TDCFS actuation stages
44
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Calibration lines — always in the data ...

[1236470418-1236556818, state: Locked]

L1 gravitational-wave strain [h(t), GDS]

= L1
B GWINC (aLIGO Design, T1800044)
Aug 5 2017 (G1801952, 96 Mpc)

H1 Freq. (Hz)

L1 Freq. (Hz)

[strain/v/Hz]
S 8

181ty

;10—20_

10—21_

10~22 -

10—23_

7.93 N/A
16.7 15.1
17.3 15.7
17.9 16.3
19.1 16.9
433.7 434.9
1083.7 1083.1

GW amplitude spectral der

10~24 ' !
10 100 103

Frequency [Hz]

e Better characterize the response - constantly measuring C(f), A(f),

and TDCFs.

e Minimize footprint in the most sensitive, astrophysically interesting

band of the detectors.
e Can be removed in post-processing - “clean” data

GWOSC Open Data Workshop, Paris, April 2019 Lﬁ(ﬂ
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Photon calibrator — ~1% precision

Sensing
AL o0 c I -
________________ AL p | Dl

Test mass ¢ e

—II den

Power sensor |
2 COS(G) 1 | Actuation
z(f) = P(flm——— R .

Transmitter
Module

Beam-relay
periscope

Suspended
test mass

.
+ Main interferometer beam

e

Stray light
baffle

Receiver
Module

Vacuum envelope
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Calibration uncertainty estimation — R;,,.(f) / R;.o4e1 ()

\%

1.1 ey ————— ————— ——  ® Maximum excursion of the
o6l | 1-sigma limits of statistical
uncertainty and systematic
error from unity
magnitude/zero phase (20—
1024 Hz):

0.9 BN IR
2 3 .
Frequency [Hz) 10 .« Magnitude error: ~2-3 %
y Phase error: ~2—3 deg
3_
=2 ~1% (mag) and ~1 deg
200 (phase) in the most sensitive
-1 region (~100 Hz)
o 2F
-3+
4L
-5 - L L P S S S i L FE— T
10 102 10°
Frequency [Hz]

e Best results achieved in offline calibration (3 months after O2 ended)
— time-dependent variations (TDCFs) were corrected
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Low-latency Noise Subtraction — “CLEAN” data

B H1:GDS-CALIB_STRAIN 3
H1:GDS-CALIB_STRAIN_CLEAN |} 100

10—19

Strain [Hz "]
5

Angle-averaged range [Mpc]

40+
10-22
20°
10%
10_24 i : I : : |
10 100 103
Frequency [Hz]

801

60~ :
WW‘WWWV\NWNN\’\»#VM

H1 binary neutron star inspiral range

m  HI1:DCS-CALIB_STRAIN [median = 51.5 Mpc, 6 = 0.6 Mpc]
= HI:DCS-CALIB_STRAIN_CLEAN [median = 66.0 Mpc, 6 = 0.9 Mpc]

.0

0.5 1.0 L5 2.0
Time [hours] from Aug 17 2017 11:26:38 UTC

GWOSC Open Data Workshop, Paris, April 2019 é%
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Monitoring calibration lines

gwpy.timeseries import TimeSeries

data - TimeSeries.fetch_open_data('L1l', 1131350417, 1131357617)

We can demodulate the TimeSeries at 331.3 Hz with a stride of once per minute:

amp, phase - data.demodulate(331.3, stride-60)

We can then plot these trends to visualize changes in the amplitude and phase of the calibration line:

gwpy.plotter import TimeSeriesPlot

plot = TimeSeriesPlot(amp, phase, sep-True)
plot.show()

Support for calibration line tests is
now a feature in GWPy
(see Duncan Macleod’s tutorial)

GWOSC Open Data Workshop, Paris, April 2019 L’ic?y



Why do we need precise calibration?
Sensitive volume / merger rates, Cosmology

Credit: W. Farr

7000

v~ Hqyd

6000 -

e Correlated calibration
systematic errors impact
Ho measurement

w1 A few toy
4000 — B N S
events

Credit: E. Hall

100 2 Hoeizon 7
x . 105 detecied
0% detected

I I I I I I I
0 10 20 30 40 50 60 lU
d (Mpc)

e Calibration systematic errors
and statistical uncertainties !
impact the horizon distance,

CBC rates, especially at high
redshift o

Redshitt

—allGO ==ET

vy s T - |

1 10 100 1 O L0000
Total source-frame mass [M.)
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Precision calibration allows us to compare the
data with predictions from General Relativity

and look for deviations ...

92 X
x 10 21 LIGO Hanford LIGO Livingston

o O O
T

Strain

0O OO
o O

(2 [ an iy ]
T T

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 130 200

Frequency [Hz]

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Time [milliseconds] Time [milliseconds]
see also Abbot et al., Phys Rev Lett 116, 061102 (2016)
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Next up:

* Accessing the LIGO & Virgo data from GWOSC

* Signal processing with GWpy

* Finding GWs from compact binary coalescence (CBC)
* Using pyCBC to find the signals in noisy data

* Bayesian estimation of the parameters of the signal
(masses, spins, etc)

* Localizing the signal source on the sky,
alerting EM astronomers
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