

The Basics of compact binary searches

GRAVITATIONAL-WAVE TRANSIENT CATALOG-1

Ed Porter APC/CNRS

Topics Covered

SIGNAL PROCESSING AND MATCHED FILTERING

LVC Open Data Workshop, APC-Paris, 8-10 April 2019

3

What is matched filtering?

- GWs are analogous to 1D sound waves
- Optimal linear filter for weak signals buried in random Gaussian noise
- Also known as optimal or Wiener filtering
- Works by correlating a known signal model (template) with the data

Constructing the optimal linear filter

- Starting with data : s(t) = h(t) + n(t), n(t) > > h(t)9
- Define the correlation between the data and a real filter as 9

$$C(\tau) = \int_{-\infty}^{\infty} dt \, s(t) F(t+\tau) = \int_{-\infty}^{\infty} df \, \tilde{s}(f) \tilde{F}^*(f) e^{2\pi i f \tau}$$

- To evaluate the signal-to-noise ratio (SNR), $\rho = \frac{S}{N}$
- we define the filtered signal

$$S = \langle C(\tau) \rangle = \int_{-\infty}^{\infty} df \left\langle \tilde{s}(f) \right\rangle \tilde{Q}^*(f) e^{2\pi i f \tau} = \int_{-\infty}^{\infty} df \, \tilde{h}(f) \tilde{Q}^*(f) e^{2\pi i f \tau}$$

• using $\langle n(t) \rangle = 0$

Constructing the optimal linear filter

For stationary, Gaussian noise, the variance is

$$\left\langle N^2 \right\rangle = \left[\left\langle C^2(\tau) \right\rangle - \left\langle C(\tau) \right\rangle^2 \right]_{h(t)=0} = \int_{-\infty}^{\infty} df df' \left\langle \tilde{n}(f) \tilde{n}^*(f') \right\rangle \tilde{F}(f) \tilde{F}^*(f') e^{2\pi i \tau (f-f')}$$

Defining a two-sided power spectral density $\langle \tilde{n}(f)\tilde{n}^*(f')\rangle = \delta(f-f')S_h(f)$ 9

• we can now write
$$\langle N^2 \rangle = \int_{-\infty}^{\infty} df |\tilde{F}(f)|^2 S_h(f)$$

• defining the SNR as
$$\rho = \frac{S}{N} = \frac{\int_{-\infty}^{\infty} df \,\tilde{h}(f) \tilde{F}^*(f) e^{2\pi i f \tau}}{\left[\int_{-\infty}^{\infty} df \,|\, \tilde{F}(f)\,|^2 S_h(f)\right]^{1/2}}$$

Constructing the optimal linear filter

Defining a noise-weighted inner product 9

$$\langle a | b \rangle = 2 \int_0^\infty \frac{df}{S_n(f)} \tilde{a}(f) \tilde{b}^*(f) + c \cdot c \,.$$

the SNR now becomes 9

$$\frac{S}{N} = \frac{\left\langle \tilde{h}(f) \left| S_n(f) \tilde{F}(f) e^{2\pi i f \tau} \right\rangle \right.}{\left\langle S_n(f) \tilde{F}(f) \left| S_n(f) \tilde{F}(f) \right\rangle^{1/2}}$$

- To optimise the SNR, we require $\tilde{F}(f) || \tilde{h}(f)$ 9
- allowing us to define the optimal linear filter as $\tilde{F}(f) = \frac{\tilde{h}(f)}{S(f)}e^{-2\pi i f \tau}$ 9
- and the optimal SNR as $\rho_{opt} = \langle h | h \rangle^{1/2}$ 9

Response to a GW

• The response at each detector is

$$h_i(t) = h_+(t+\tau_i)F_i^+ + h_\times(t+\tau_i)F_i^\times$$

- where (h_+, h_{\times}) are the GW polarisations
- \square and (F^+, F^{\times}) are the detector pattern response
- In general, the GWs are defined by 15-17 parameters that we can define as extrinsic and intrinsic

Intrinsic Parameters (Dynamical)

Intrinsic Parameters (Dynamical)

Modelling the Phase

- Remember, matched filtering needs phase coherence
- Newtonian mechanics : analytic solution to 2-body problem, no solution to the generic 3-body problem
- GR : no solution to the 2-body problem
- Modelling requires a combination of analytic and numerical relativity

Time-Domain Morphology of a CBC Signal

Inspiral

- Wide separation, i.e. v_{orb} << c
- To start we can write the TD polarisations as

$$h_{+}(t) = \frac{2(1 + \cos^{2}(t))m\eta}{D_{L}} \cos \Phi(t) , \ h_{\times}(t) = -\frac{4\cos(t)m\eta}{D_{L}} \sin \Phi(t)$$

• where
$$\eta = m_1 m_2 / m^2$$
, and $\Phi(t) \equiv \Phi_{GW}(t) = 2 \Phi_{orb}(t)$

We can then write the GW phase as a PN expansion

$$\Phi(t) = \phi_N(t) + \phi_2(t) + \phi_3(t) + \dots$$

• in terms of a small parameter $v = (\pi m f)^{1/3}$, where f is the GW frequency, and the sub-script corresponds to the power of (v/c) correction

Inspiral

- ${\scriptstyle \bigcirc}\,$ In the early inspiral, we can assume ${\dot f}_{orb}/f_{orb}^2 \ll 1$
- This allows us to use the energy balance equation $F(t) = -m \frac{dE(t)}{dt}$
- and calculate the phase evolution

- Both E'(v) and F(v) have a PN (power) series solution
- How we treat the ratio E'(v)/F(v) leads to different PN families
- Each PN series is asymptotically divergent, meaning...
 - ...different families have differing levels of accuracy,
 - ...a higher approximation does not guarantee higher accuracy,
 - ...the PN approximation should break down at the LSO ($\sim R=6M$)
 - ...but in fact, breaks down much sooner ($R \sim 12M$)

Late Inspiral / Merger

- Both the late inspiral and merger need to solved numerically
- A relatively small number of cycles can take months to generate on a supercomputer

NR becomes even more important as we try and simulate BNS and NSBH systems

Ringdown

- The final black hole rings like a bell that's been struck
- An analytic solution exists using black hole perturbation theory
- The energy is radiated in a series of quasi-normal modes
- These modes can be used to test the no-hair theorem
- No evidence of the QNMs as of yet

Hybrid Waveforms

- NR waveforms are expensive to generate and use
- For efficient data analysis, we use approximate analytical solutions
 - EOB solves Hamilton's equations along the trajectory. Calibrated using NR waveforms
 - IMRPhenom frequency domain analytic waveform, also calibrated using NR waveforms
- As we don't know if our waveforms are perfectly accurate, different families allow us to keep systematics under control
- New waveform families include eccentricity, tidal forces, precession etc.

Treating the Data

- Easiest to work in Fourier domain
- e.g. Sine-wave with *f*=50 Hz buried in random Gaussian noise

- Stationary phase approximation
- Start with a generalised Fourier integral $I = \int F(\omega) e^{i \varphi(\omega)} d\omega$
- Solution Assume $F(\omega)$ varies slowly compared to $\varphi(\omega)$. As the phase rapidly varies, the integral averages to zero except where $\varphi(\omega)$ has an extremum
- So find points where $d\varphi/d\omega = 0$ and Taylor expand the phase 1

$$\varphi(\omega) = \varphi(\omega_{sp}) + \frac{1}{2}\varphi''(\omega - \omega_{sp})^2 + \dots$$

Evaluate the integral in the vicinity of extrema, and sum if more than one saddle point

$$I = F(\omega_{sp}) e^{i \varphi(\omega_{sp})} \int e^{\frac{i}{2} \varphi(\omega - \omega_{sp})^2} d\omega$$

Fresnel type integral with standard solution, leading to

$$\tilde{h}\left(f\right) = A f^{-7/6} e^{i \varphi(f)}$$

WAVEFORM COMPARISONS

Abbott et al, PRX 6, 041015 (2016)

IGD

- Our analysis is best represented in the Fourier domain
- So given a continuous signal h(t), the FT is $\tilde{h}(f) = \int_{-\infty}^{\infty} dt h(t)e^{-2\pi i f t}$
- However, we need a digital representation, i.e. $h(t) \Rightarrow h_j = h(t_j)$
- Given a sampling frequency f_s , we define $\Delta t = 1/f_s$
- With time domain data of N samples, total observation time $T_{obs} = N \Delta t$, the discrete FT is given by
- $\tilde{h}_k = \sum_{j=0}^{N-1} h_j e^{-2\pi i j k/N}$ where each sample has a frequency $f_k = k / T_{obs}$
- But how do we choose f_s ?

- Nyquist theorem prescribes how to digitally represent a continuous signal
- It defines a critical or Nyquist frequency taken to be the highest frequency content of the signal
- Define:
 - Nyquist frequency $f_{Nyq} \equiv f_{max}$
 - Sampling frequency $f_s \ge 2f_{Nyq}$
 - Sampling period $\Delta t = 1/f_s$
- Sampling at less than twice the Nyquist frequency leads to "aliasing"
- For GWs, if the sampling frequency is $f_s = 4096 Hz$, the highest frequency signal we can model is $f_{max} = 2048 Hz$

Solution Example : sine-wave with f = 10 Hz, $T_{obs} = 1 \text{ sec}$, $dt = 1/f_s$

If I oversample...?

and if I undersample...?

GO

I get aliasing!!

Nonu point below

Low and High-band pass filtering

- Detectors very noisy below
 20Hz and above 2kHz
- High pass filter > 20Hz
- Low pass filter < 2kHz</p>

IGD

Windowing the data

Windowing the data

- Our signal starts abruptly at t = 0, and finishes abruptly at t = 0.973 secs
- Equivalent to multiplying the signal with a rectangular window function
- and....?

Windowing the data

FT of a rectangular window function

FT of a Hanning window function

FT of a Blackman window function

FT of a chirp waveform using a Hanning window function

FT of chirp waveform with a Blackman window function

Matched Filtering

3 short sims of waveform fitting

<u>Advanced detector</u> <u>DBSERVATION RUNS</u>

01/02

Event	m_1/M_{\odot}	m_2/M_{\odot}	\mathcal{M}/M_{\odot}	Xeff	$M_{\rm f}/{ m M}_{\odot}$	$a_{\rm f}$	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{peak}/(ergs^{-1})$	d_L/Mpc	z	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01^{+0.12}_{-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} imes 10^{56}$	430^{+150}_{-170}	$0.09^{+0.03}_{-0.03}$	180
GW151012	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	0.04+0.28	$35.7^{+9.9}_{-3.8}$	$0.67\substack{+0.13 \\ -0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} imes 10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09\\-0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20\\-0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} imes 10^{56}$	440^{+180}_{-190}	$0.09\substack{+0.04\\-0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04\substack{+0.17\\-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66^{+0.08}_{-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9} imes 10^{56}$	960^{+430}_{-410}	$0.19^{+0.07}_{-0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.05}_{-0.1}$	$3.5^{+0.4}_{-1.3}\times10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5}\times10^{56}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19\\-0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	$23.8^{+5.2}_{-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4^{+5.2}_{-3.7}$	$0.70\substack{+0.08\\-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9}\times10^{56}$	990^{+320}_{-380}	$0.20\substack{+0.05\\-0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3^{+2.9}_{-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.4_{-2.4}^{+3.2}$	$0.72\substack{+0.07\\-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5}\times10^{56}$	580^{+160}_{-210}	$0.12^{+0.03}_{-0.04}$	87
GW170817	$1.46\substack{+0.12\\-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186\substack{+0.001\\-0.001}$	0.00+0.02	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1\times 10^{56}$	40^{+10}_{-10}	$0.01^{+0.00}_{-0.00}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8^{+4.3}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09\substack{+0.18\\-0.21}$	$59.8\substack{+4.8\\-3.8}$	$0.67\substack{+0.07 \\ -0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} imes 10^{56}$	1020^{+430}_{-360}	$0.20\substack{+0.07 \\ -0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4^{+6.3}_{-7.1}$	$29.3^{+4.2}_{-3.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71\substack{+0.08 \\ -0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9}\times10^{56}$	1850_{-840}^{+840}	$0.34\substack{+0.13 \\ -0.14}$	1651

⊌ 10 BBHs

Abbott et al, arXív:1811.12907 (2018)

Event	m_1/M_{\odot}	m_2/M_{\odot}	\mathcal{M}/M_{\odot}	Xeff	$M_{\rm f}/{ m M}_{\odot}$	$a_{\rm f}$	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\rm peak}/({\rm erg~s^{-1}})$	d_L/Mpc	z	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01^{+0.12}_{-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} imes 10^{50}$	430^{+150}_{-170}	$0.09^{+0.03}_{-0.03}$	180
GW151012	$23.3\substack{+14.0\\-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	0.04_0.19	$35.7^{+9.9}_{-3.8}$	$0.67^{+0.13}_{-0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7} imes 10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09\\-0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20\\-0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74^{+0.07}_{-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} imes 10^{56}$	440^{+180}_{-190}	$0.09\substack{+0.04\\-0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04\substack{+0.17\\-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66^{+0.08}_{-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9} imes 10^{56}$	960^{+430}_{-410}	$0.19_{-0.08}^{+0.07}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.05}_{-0.1}$	$3.5^{+0.4}_{-1.3} imes 10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81^{+0.07}_{-0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5}\times10^{56}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19\\-0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	$23.8^{+5.2}_{-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4_{-3.7}^{+5.2}$	$0.70^{+0.08}_{-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9} imes 10^{56}$	990 ⁺³²⁰ -380	$0.20\substack{+0.05 \\ -0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3^{+2.9}_{-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.4^{+3.2}_{-2.4}$	$0.72^{+0.07}_{-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5}\times10^{56}$	580^{+160}_{-210}	$0.12_{-0.04}^{+0.03}$	87
GW170817	$1.46\substack{+0.12\\-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186\substack{+0.001\\-0.001}$	0.00+0.02	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1\times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8\substack{+4.3\\-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09\substack{+0.18\\-0.21}$	$59.8\substack{+4.8\\-3.8}$	$0.67\substack{+0.07 \\ -0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} imes 10^{56}$	1020^{+430}_{-360}	$0.20\substack{+0.07\\-0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4_{-7.1}^{+6.3}$	$29.3^{+4.2}_{-3.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71\substack{+0.08\\-0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9}\times10^{56}$	1850_{-840}^{+840}	$0.34\substack{+0.13 \\ -0.14}$	1651

Massive energy output

Abbott et al, arXív:1811.12907 (2018)

Event	m_1/M_{\odot}	m_2/M_{\odot}	\mathcal{M}/M_{\odot}	Xeff	$M_{\rm f}/{ m M}_{\odot}$	$a_{\rm f}$	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\text{peak}}/(\text{erg s}^{-1})$	d_L/Mpc	z	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01^{+0.12}_{-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} imes 10^{56}$	430^{+150}_{-170}	$0.09^{+0.03}_{-0.03}$	180
GW151012	$23.3\substack{+14.0 \\ -5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67\substack{+0.13\\-0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7}\times10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09\\-0.09}$	1555
GW151226	$13.7\substack{+8.8\\-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5^{+6.4}_{-1.5}$	$0.74\substack{+0.07\\-0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} imes 10^{56}$	440^{+180}_{-190}	$0.09\substack{+0.04\\-0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04\substack{+0.17\\-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66\substack{+0.08\\-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9}\times10^{56}$	960^{+430}_{-410}	$0.19^{+0.07}_{-0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.05}_{-0.1}$	$3.5^{+0.4}_{-1.3} imes 10^{56}$	320^{+120}_{-110}	$0.07^{+0.02}_{-0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5}\times10^{56}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19\\-0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	$23.8^{+5.2}_{-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4^{+5.2}_{-3.7}$	$0.70^{+0.08}_{-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9} imes 10^{56}$	990 ⁺³²⁰ -380	$0.20^{+0.05}_{-0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3^{+2.9}_{-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.4^{+3.2}_{-2.4}$	$0.72^{+0.07}_{-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5} imes 10^{56}$	580^{+160}_{-210}	$0.12^{+0.03}_{-0.04}$	87
GW170817	$1.46\substack{+0.12\\-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186\substack{+0.001\\-0.001}$	$0.00^{+0.02}_{-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1 \times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8\substack{+4.3\\-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09\substack{+0.18\\-0.21}$	$59.8\substack{+4.8\\-3.8}$	$0.67\substack{+0.07 \\ -0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} imes 10^{56}$	1020^{+430}_{-360}	$0.20\substack{+0.07 \\ -0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4^{+6.3}_{-7.1}$	$29.3^{+4.2}_{-3.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71\substack{+0.08 \\ -0.10}$	$3.3^{+0.9}_{-0.8}$	$3.6^{+0.6}_{-0.9}\times10^{56}$	1850_{-840}^{+840}	$0.34\substack{+0.13 \\ -0.14}$	1651

Most massive and distant source

Abbott et al, arXív:1811.12907 (2018)

LVC Open Data Workshop, APC-Paris, 8-10 April 2019

47

BBH Masses

Abbott et al, arXív:1811.12907 (2018)

BBH Distance

Abbott et al, arXív:1811.12907 (2018)

BBH Spins

Abbott et al, arXív:1811.12907 (2018)

Event	m_1/M_{\odot}	m_2/M_{\odot}	\mathcal{M}/M_{\odot}	Xeff	$M_{\rm f}/{ m M}_{\odot}$	af	$E_{\rm rad}/({\rm M}_{\odot}c^2)$	$\ell_{\text{peak}}/(\text{erg s}^{-1})$	d_L/Mpc	z	$\Delta\Omega/deg^2$
GW150914	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	$28.6^{+1.6}_{-1.5}$	$-0.01^{+0.12}_{-0.13}$	$63.1^{+3.3}_{-3.0}$	$0.69^{+0.05}_{-0.04}$	$3.1^{+0.4}_{-0.4}$	$3.6^{+0.4}_{-0.4} imes 10^{56}$	430^{+150}_{-170}	$0.09^{+0.03}_{-0.03}$	180
GW151012	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	$15.2^{+2.0}_{-1.1}$	$0.04^{+0.28}_{-0.19}$	$35.7^{+9.9}_{-3.8}$	$0.67\substack{+0.13 \\ -0.11}$	$1.5^{+0.5}_{-0.5}$	$3.2^{+0.8}_{-1.7}\times10^{56}$	1060^{+540}_{-480}	$0.21\substack{+0.09\\-0.09}$	1555
GW151226	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	$8.9^{+0.3}_{-0.3}$	$0.18\substack{+0.20 \\ -0.12}$	$20.5_{-1.5}^{+6.4}$	$0.74\substack{+0.07 \\ -0.05}$	$1.0^{+0.1}_{-0.2}$	$3.4^{+0.7}_{-1.7} imes 10^{56}$	440^{+180}_{-190}	$0.09\substack{+0.04\\-0.04}$	1033
GW170104	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	$21.5^{+2.1}_{-1.7}$	$-0.04^{+0.17}_{-0.20}$	$49.1^{+5.2}_{-3.9}$	$0.66\substack{+0.08\\-0.10}$	$2.2^{+0.5}_{-0.5}$	$3.3^{+0.6}_{-0.9}\times10^{56}$	960^{+430}_{-410}	$0.19^{+0.07}_{-0.08}$	924
GW170608	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	$7.9^{+0.2}_{-0.2}$	$0.03^{+0.19}_{-0.07}$	$17.8^{+3.2}_{-0.7}$	$0.69^{+0.04}_{-0.04}$	$0.9^{+0.05}_{-0.1}$	$3.5^{+0.4}_{-1.3}\times10^{56}$	320^{+120}_{-110}	$0.07\substack{+0.02 \\ -0.02}$	396
GW170729	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	$35.7^{+6.5}_{-4.7}$	$0.36^{+0.21}_{-0.25}$	$80.3^{+14.6}_{-10.2}$	$0.81\substack{+0.07 \\ -0.13}$	$4.8^{+1.7}_{-1.7}$	$4.2^{+0.9}_{-1.5}\times10^{56}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19\\-0.20}$	1033
GW170809	$35.2^{+8.3}_{-6.0}$	$23.8^{+5.2}_{-5.1}$	$25.0^{+2.1}_{-1.6}$	$0.07^{+0.16}_{-0.16}$	$56.4_{-3.7}^{+5.2}$	$0.70\substack{+0.08\\-0.09}$	$2.7^{+0.6}_{-0.6}$	$3.5^{+0.6}_{-0.9}\times10^{56}$	990^{+320}_{-380}	$0.20\substack{+0.05 \\ -0.07}$	340
GW170814	$30.7^{+5.7}_{-3.0}$	$25.3^{+2.9}_{-4.1}$	$24.2^{+1.4}_{-1.1}$	$0.07^{+0.12}_{-0.11}$	$53.4^{+3.2}_{-2.4}$	$0.72^{+0.07}_{-0.05}$	$2.7^{+0.4}_{-0.3}$	$3.7^{+0.4}_{-0.5} \times 10^{56}$	580^{+160}_{-210}	$0.12^{+0.03}_{-0.04}$	87
GW170817	$1.46\substack{+0.12\\-0.10}$	$1.27^{+0.09}_{-0.09}$	$1.186\substack{+0.001\\-0.001}$	$0.00^{+0.02}_{-0.01}$	≤ 2.8	≤ 0.89	≥ 0.04	$\geq 0.1\times 10^{56}$	40^{+10}_{-10}	$0.01\substack{+0.00\\-0.00}$	16
GW170818	$35.5^{+7.5}_{-4.7}$	$26.8^{+4.3}_{-5.2}$	$26.7^{+2.1}_{-1.7}$	$-0.09^{+0.18}_{-0.21}$	$59.8^{+4.8}_{-3.8}$	$0.67^{+0.07}_{-0.08}$	$2.7^{+0.5}_{-0.5}$	$3.4^{+0.5}_{-0.7} imes 10^{56}$	1020^{+430}_{-360}	$0.20\substack{+0.07\\-0.07}$	39
GW170823	$39.6^{+10.0}_{-6.6}$	$29.4^{+6.3}_{-7.1}$	$29.3^{+4.2}_{-3.2}$	$0.08^{+0.20}_{-0.22}$	$65.6^{+9.4}_{-6.6}$	$0.71\substack{+0.08\\-0.10}$	$3.3_{-0.8}^{+0.9}$	$3.6^{+0.6}_{-0.9}\times10^{56}$	1850_{-840}^{+840}	$0.34\substack{+0.13 \\ -0.14}$	1651

Ist ever BNS and best resolved event

Abbott et al, arXív:1811.12907 (2018)

Common question....

...how do we know GW170817 was a BNS?

<u>GRAVITATIONAL WAVE</u> <u>ASTRONOMY</u>

So, what can we do?

- Fundamental physics
- Astrophysics
- Extreme MatterCosmology
- Cosmology

Abbott et al, ApJ Letters 848, L13 (2017)

$$\Delta t = (1.74 \pm 0.05) s$$

Defining the fractional difference between the speed of light and GWs as

$$\frac{c_g - c}{c} \approx c \frac{\Delta t}{D_L}$$

We find the following constraint

$$-3 \times 10^{-15} \le \frac{\Delta c}{c} \le 7 \times 10^{-16}$$

Large consequences for cosmological theories

Abbott et al, ApJ Letters 848, L13 (2017)

with extension to: Einstein-Aether, Horava gravity, Generalised Proca, TeVeS, massive gravity, bigravity, multi-gravity, MOND-like theories

arXív:1710.05901, 1710.06394, 1710.05893, 1710.05877....

 \Im γ is the PPN parameter parameterising a deviation from Einstein-Maxwell theory

 \bigcirc Conservative bound on $\Delta \gamma = |\gamma_{GW} - \gamma_{EM}| \le 2 rac{\Delta t}{\Delta t_s}$

$$\bigcirc$$
 is $-2.6\times 10^{-7} \leq \Delta\gamma \leq 1.2\times 10^{-6}$

Newer result (S. Boran et al, 1710.06168) using more sophisticated dark matter halo model gives

$$\Delta \gamma \le 3.9 \times 10^{-8}$$

implying that MOND-like dark matter emulator theories are ruled out, as the GWs would have arrived 1000 days before the EM emission

Fourier domain waveform

$$\tilde{h}(f) = A(f)e^{i\Psi_{GR}(f)}$$

GW inspiral phase to 3.5 PN order, i.e. $(v/c)^7$

+ scalar-tensor theory at the -1PN order, i.e. f^{-7/3}

$$\bigcirc$$
 Set $\psi_k \rightarrow \psi_k (1 + \delta \psi_k)$

Phenomenological phase

$$\Psi(f) = \Psi_{GR}(f) + \Psi_{NGR}(f)$$

Phenomenological waveform

$$\tilde{h}(f) = A(f)e^{i\Psi_{GR}(f)}e^{i\Psi_{NGR}(f)}$$

Has been demonstrated that it is enough to search for the dominant effect

Test of the PN approximation

Abbott et al, arXív:1903.04467

Solution Assume a dispersion relationship of the form

$$E^2 = p^2 c^2 + A p^\alpha c^\alpha, \ \alpha \ge 0.$$

$$v_g/c = 1 + (\alpha - 1)AE^{\alpha - 2}/2$$

♥ which changes the phase of the GW

$$\delta \Psi = \begin{cases} \frac{\pi}{\alpha - 1} \frac{AD_{\alpha}}{(hc)^{2 - \alpha}} \left[\frac{(1 + z)f}{c} \right]^{\alpha - 1} & \alpha \neq 1 \\ \frac{\pi AD_{\alpha}}{hc} \ln \left(\frac{\pi G \mathcal{M}^{\det} f}{c^3} \right) & \alpha = 1 \end{cases}$$

Abbott et al, PRL 118, 221101 (2017)

Gan probe the following theories:

- * Double special relativity $A = \eta_{dsrt}$, $\alpha = 3$
- * Extra-dimensional gravity $A = -\alpha_{edt}$, $\alpha = 4$
- * Horova-Lifshitz gravity $A = \kappa_{hl}^4 \mu_{hl}^2 / 16$, $\alpha = 4$
- * Massive gravity $A = (m_g c^2)^2$, $\alpha = 0$
- * Multifractional spacetime $A = (-3^{1-\alpha/2})2E_*^{2-\alpha}/(3-\alpha)$, $\alpha = 2-3$

Abbott et al, arXiv:1903.04467

Astrophysics

- Uncertainty in formation channels
 - galactic field evolution
 - dynamical capture in globular clusters
- How does the common envelope phase actually work?
- Role of metallicity?
- Do natal kicks in SN play a role?
- How does mass transfer efficiency affect binary evolution?
- What is the merger rate for binary systems?

ASTROPHYSICS

Two possible mass gaps

 \Im >3 M_{\odot} : nuclear EOS \Im <5 M_{\odot} : binary evolution

 \ge > 50 M_{\odot} : PISN

ASTROPHYSICS

Özel & Freíre, Ann.Rev.Astron.Astrophys 54, 401 (2017)

Özel & Freíre, Ann.Rev.Astron.Astrophys 54, 401 (2017)

LIGN

- New analysis beginning at 23 Hz (~1500 extra cycles) with better modelling
- No assumption on binary components
- No assumptions on EOS independent variation
- sky error reduced to 16 deg² (using sky position given by SSS17A/AT 2017 gfo)
- Bound on Λ_1 Λ_2 is 20% smaller

Abbott et al, arXív:1805.11579 (2018)

- Assume 2 NSs with identical EOS
- 2 EOS methodologies
 - EOS-insensitive :
 - i. $\Lambda_a(\Lambda_s, q)$ ii Λ
 - іі. *Л*-*С*
 - Parameterised EOS (no max mass) *i. Spectral parameterisation*
 - Original detection results
- 90% Cl for Λ_1 Λ_2 shrinks by ~3

 $\Lambda_{1.4} = 190^{+390}_{-120}$

Abbott et al, arXív:1805.11581 (2018)

LVC Open Data Workshop, APC-Paris, 8-10 April 2019

Now assume spectral parameterisation + maximum NS mass = 1.97 M_{\odot}

Abbott et al, arXív:1805.11581 (2018)

LVC Open Data Workshop, APC-París, 8-10 Apríl 2019

EOS-ins

GW + EM gives much tighter constraint

Q:So what is the remnant of the merger?

A:From GWs - we don't know. High frequency signal dominated by photon shot noise

LVC Open Data Workshop, APC-París, 8-10 Apríl 2019 76

Q: So what is the remnant of the merger?

A: From EM - unclear! Some people believe prompt collapse to BH, others believe in the formation of a transient hypermassive NS

Margalit et al (2017)

Credit: Jennifer Johnson/SDSS

LIGN

Cosmology

Cosmology

N.B. No cosmic distance ladder needed!!

GW astronomy measures luminosity distance directly over cosmic scales

Abbott et al, Nature (2017)

• Very exciting time

• Thank you for attending the workshop

LVC Open Data Workshop, APC-París, 8-10 Apríl 2019