

LIGO Laser Power Calibration Standards

Richard Savage for Yannick (Niko) Lecoeuche LIGO Hanford Observatory March 15, 2019

GW Metrology Workshop, NIST, Boulder, CO

■LIGO Power C

Power Calibration Standards

LIGO Earlier Power Sensor Configuration

- Two spacers with apertures between integrating sphere and photodetector.
 - Less sensitive to radial position.
 - Increased laser speckle amplitude.
 - Less robust mechanically

LIGO-G1900393

Mechanical Robustness

- Radial dependence
 - No spacers: 4 %/mm
 - One spacer: 1 %/mm

- Lateral dependence
 - 1 % per 16 µm offset

Laser Speckle

- Increases with decreasing viewing area
 - Less detector spacers better

IGOPhotodetector mounting

- Monolithic photodetector housing front plate
- Two-piece assembly draws PD assembly against sphere port.

Pneumatic Sliders for Automated Measurements

LIGO-G1900393

Working Standard Calibration Procedure

- WS/GS calibrations use:
 - Simultaneous measurements eliminate laser power variations
 - Swapping positions eliminates beamsplitter variations

$$\sqrt{\frac{V_{WS}(\text{refl}) * V_{WS}(\text{tran})}{V_{GS}(\text{refl}) * V_{GS}(\text{tran})}} = \boxed{\frac{\rho_{WS}}{\rho_{GS}}}$$

Responsivity ratio measurements

100-second samples; 1000 measurements over weekend

Histogram of values for 1000 measurement set

- Heat one WS to 35 °C in oven
- Measure resp. ratio as temp. relaxes

Temp. dependence $\,\sim 0.07$ % / °C.

LIGO-G1900393

Gold Standard Stability Before/After NIST Calibration

Finally,

Working Standard	Before	After	Ratio
WSH	1.1181	1.1176	$0.9996\ (0.04~\%)$
WSL	1.0723	1.0712	$\begin{array}{c} 0.9990 \\ (0.10 \ \%) \end{array}$
WSS	1.0045	1.0048	$\frac{1.0003}{(0.03~\%)}$

EXTRA SLIDES

Gold Standard Stability Before/After NIST Calibration

IGO Temperature Dependence of Photodiodes

- Installed temperature sensors by photodiodes to investigate trends
- Thermalized WS at 35°C, measured against WS at ~20°C
- Ratio changes by ~0.07%/°C difference in WS temperature.

15

• Believed to have stable enough measurements to see laser speckle in timeseries ratios

