

Absolute Uncertainty in the GW Detector Network:

Status Update and Debrief from NIST Workshop

J. Kissel, for the World-wide collection of GW Detector Calibration Groups, the LVK, and NIST

Well... THAT Happened

Denver / Boulder

Winter Storm Ulmer destroyed all plans for attendees to fly into Denver

- Many attendees delayed
- Several attendees had cancel all together
- Workshop reduced to one day (last Friday, 2019-03-18)

Where left off in O2

The combination of

- statistical uncertainty
- remaining systematic error
- unknown systematic error

is numerically evaluated to form a 68% confidence interval, but roughly,

+ Systematic Errors

How to Measure the DARM Loop

With all loops closed and the detector running at its best sensitivity, we request a series of **in-loop** excitations to obtain direct measurements of the sensor and actuator

Our measurements of C and A are ratios of complex transfer functions

>> the **frequency-dependent**, magnitude and phase are important for uncertainty in A and C G1900379-v3

Focus on the IFO Measurements

Example Measurement

Limitations (using O2 PCAL Uncertainty)

We now have built and compared

> FOUR <u>W</u>orking <u>S</u>tandards

to be held at each site, all referenced to the <u>G</u>old <u>S</u>tandard and thus NIST

But We're Improving...

LIGO PCAL Parameter	O2 [1]	O3 [2]	
Laser Power (NIST - GS)	0.51	0.35	
Laser Power (GS - WS)	0.03	0.10	
Laser Power (WS - RX)	0.05	0.10	
Optical Efficiency	0.37	0.10	
Angle of Incidence	0.07	0.07	
Mass of test mass	0.005	0.005	
Rotation	0.40	0.20	
Total	0.75	0.50	

Overall improved between O2 & O3!

[1] Karki, S., et al. *RSI* 87.11 (2016): 114503.[2] Sudarshan Karki's talk from the Workshop

NST Workshop Take-away: NMIs are *Excited*!

- Our discoveries have stimulated excitement in the *global* power standards community.
 - "New" acronym: National Metrology Institutes (NMIs)
 - EUROMET study revisited see slides 11 and 12
- NIST reduced their standard uncertainty *for us* for O3 (special signature required!)
 - see slide 9
- On their own, current NIST reference system for laser power is old and difficult to improve; they are already planning on upgrading their systems
 - see slide 13 and 14

https://dcc.ligo.org/cgi-bin/DocDB/DisplayMeeting?conferenceid=1029

Review of EUROMET Study

Response of a Photodetector

Figure 9 Kück *Metrologia* 47.1A (2010): 02003.

Remember this scary plot?

- NIST didn't and doesn't take it in to account
- Consensus Initial concerns from GW community about "the plot" has been initially overblown.
- Proper statistical interpretation [3,4]:
 - NIST value and all others consistent with Consensus Estimate C.I.
 - Except France, who has since found ~2% systematic error (in the right direction)

[3] Amanda Koepke's Talk at NIST Workshop[4] Jimmy Dubard's Talk at NIST Workshop

G1900379-v3

Measured Value (mV/W)

DE

EUROMET Study Concerns Settled

"Dark" Unknown Uncertainty 1.50 Reported 1.48 Value Consensus 1.46 Value Reported 1.44 **Uncertainty** 68% CI for .42 Consensus Don't be scared.

RO

AU

GB

Data from Table 12, "Nd:YAG 1W" Kück Metrologia 47.1A (2010): 02003.

JP

Results from consensus.nist.gov, encouraged by Amanda Koepke's Talk G1900379-v3

ZA

FR

US

12

The Present at **NIST**

- Transfer method: beam splitter compares two calorimeters, then DUT replaces one of them
- Primary calorimeter traceable to *the* kilogram (now Planck's Constant) via electrical substitution
- Some recent improvements to optical systematics of method, external to calorimeter
- Further improvements to transfer method (and thus its uncertainty) require characterization of parts internal to calorimeter

G1900379-v3

Results from Matt Spidell's Talk at Workshop

The Future at **NST**

- Si substrate
- Peltier heater around perimeter
- Vertically aligned carbon nanotube absorber
- Transition edge sensor or commercial off-the-shelf thermistor or thin-film VOx for temperature measurement

Room Temperature Bolometer

Requirements:

- 2 cm beam diameter
- 100 μW 100 mW
- 325 nm 1.93 μm
- 2 minute time constant
- Mostly off-the-shelf

0.05% = 68% C.I. time-scale = "next few years"

Results from Michelle Stephen's Talk at Workshop

The Message: Continue As Normal

- NIST will be implementing a new primary reference
 - on pace with our observing runs and improved sensitivity
 - The challenge is now on us >> preserve that absolute uncertainty all the way to the end stations and through the interferometers
- All GW interferometers now have PCAL system and all are traceable to NIST.
- [Bonus Slides] Observatories will continue to research **new/different standards** in parallel on a "best effort" basis
 - VIRGO will continue to with Laser Wavelength reference, and move forward with improved NCAL system
 - LIGO will re-visit Laser Wavelength and RF Oscillator references, and move forward with NCAL system
 - KAGRA is pushing hard on the NCAL effort, likely will try other methods

Thank you!

BONUS SLIDES

Workshop Event on DCC

- NIST, Labsphere and other NMI attendees graciously agreed to share their talks
- All talks are available on DCC event page: <u>https://dcc.ligo.org/cgi-</u> <u>bin/DocDB/DisplayMeeting?conferenceid=1029</u>

GCAL or NCAL

KAGRA

Virgo

- World-wide excitement continues about Gravitational or Newtonian calibrators
- Develop on a "best effort" basis

https://wiki.ligo.org/Calibration/NewtonianCalibrator

ncal@ligo.org

Search "NCAL" or "GCAL" on DCC

LIGO

KAGRA Going All Out!

- FOUR GCALs surrounding one test mass
- In concert with photon calibrator with 20 W laser
- An almost 3G calibration setup!

Inoue, Yuki, et al. *Phys Rev D* 98.2 (2018): 022005. See Many more details in Yuki's Workshop Talk

- In GW150914 paper, LIGO published a comparison of 3 methods
 - Laser Wavelength (old standard)
 - Radio Frequency Oscillator (reinvented using ALS)
 - **Radiation Pressure (PCAL)**
- Now detectors are better \bullet understood and controlled
- LSC Fellows Dripta Bhattacharjee (LHO) and Rachel Gray (LLO) will support PCAL, NCAL, and resurrect the pre-O1 study, and do it more justice

