
pygwinc:
A roadmap to a generalized noise

budgeting tool for opto-mechanical
experiments

Jameson Graef Rollins
Christopher Wipf

IFO Simulations call
February 26, 2019

pygwinc

pygwinc is a pure-python port of the MATLAB-based
Gravitational Wave Interferometer Noise Calculator (GWINC):

https://git.ligo.org/gwinc/pygwinc

(Old MATLAB GWINC (“matgwinc”) has also moved to git:)

https://git.ligo.org/gwinc/matgwinc

2/18

https://git.ligo.org/gwinc/pygwinc
https://git.ligo.org/gwinc/matgwinc

pygwinc

Collection of mostly analytic noise calculations for
LIGO-like interferometers.
IFO “models” stored in YAML files.
×1000 faster than MATLAB GWINC.
Command line interface for plotting budgets from
IFO.yaml description files.
Uses inspiral-range package for calculating range figures of
merit.
Can use MATLAB python engine for
calculation/comparison with old MATLAB-based GWINC.

3/18

pygwinc YAML IFO model descriptions

Simple, readable, extensible,
common structured data
format for storing
experimental parameters.

aLIGO.yaml:

Infrastructure:
Length: 3995.0
ResidualGas:

mass: 3.35e-27
polarizability: 7.8e-31
pressure: 4.0e-07

Temp: 290.0
Laser:

Power: 125.0
Wavelength: 1.064e-06

Materials:
Coating:

Alphahighn: 3.6e-06
Alphalown: 5.1e-07
Betahighn: 1.4e-05
Betalown: 8.0e-06
CVhighn: 2100000.0
CVlown: 1641200.0
Indexhighn: 2.06539
Indexlown: 1.45
Phihighn: 0.00036
Phihighn_slope: 0.1
Philown: 5.0e-05

... 4/18

pygwinc usage

Load and plot budgets programmatically:
>>> import gwinc
>>> import numpy as np
>>> freq = np. logspace (1, 3, 1000)
>>> ifo = gwinc. load_ifo ('aLIGO ')
>>> ifo = gwinc. precompIFO (freq , ifo)
>>> noises = gwinc. noise_calc (freq , ifo)
>>> gwinc. plot_noise (ifo , noises)

or from the command line:

$ gwinc aLIGO

5/18

pygwinc noise budget plot

101 102 103

Frequency [Hz]

10 24

10 23

10 22

10 21

St
ra

in
 [1

/
Hz

]
GWINC Noise Budget: aLIGO

Total
Quantum
Seismic
Newtonian
Sus. Thermal

Coat. Brown.
Coat. Thermo.
Subs. Brown.
Subs. TE
Excess Gas

6/18

pygwinc development

Initial motivation:
Python.
Better code management and quality control.
Improve performance.

Semi-self-imposed constraints:
Make it looks as much like matgwinc internally as possible,
to ease transition for developers.
Retain backwards compatibility with matgwinc (ability to
load and execute existing matgwinc ifo.mat files).
Strict validation with matgwinc.

7/18

pygwinc noise calculators

Basic noise function:

gwinc.noise. quantum . shotrad
gwinc.noise. seismic . seismic
gwinc.noise. newtonian .gravg
gwinc.noise. suspensionthermal . susptherm
gwinc.noise. coatingthermal . coatbrownian
gwinc.noise. coatingthermal . thermooptic
gwinc.noise. substratethermal . subbrownian
gwinc.noise. substratethermal . subtherm
gwinc.noise. residualgas .gas

More being added for Voyager, CE...

8/18

pygwinc noise calculators

From gwinc.noise.coatingthermal:
def coatbrownian (f, ifo):

""" Optical coating Brownian thermal noise """

Length = ifo. Infrastructure . Length
wBeam_ITM = ifo. Optics .ITM. BeamRadius
wBeam_ETM = ifo. Optics .ETM. BeamRadius
dOpt_ITM = ifo. Optics .ITM. CoatLayerOpticalThickness
dOpt_ETM = ifo. Optics .ETM. CoatLayerOpticalThickness

compute Brownian noise for specified coating structure
SbrITM = getCoatBrownian (f, ifo , wBeam_ITM , dOpt_ITM)
SbrETM = getCoatBrownian (f, ifo , wBeam_ETM , dOpt_ETM)

n = 2 * (SbrITM + SbrETM) * ifo. gwinc . dhdl_sqr

return n

Note very similar look to matgwinc (including MATLAB
struct-like data structure for IFO parameters).

9/18

pygwinc limitations

GWINC assumes a LIGO-like detector configuration, i.e.
suspended Michelson interferometer.

Prevents encoded knowledge of the fundamental noise
sources from being used in other contexts, experimental
typologies, etc.
Prevents use of more sophisticated tools for calculating
noise transfer functions (e.g. Finesse, Optickle, etc.)

Can we separate out the fundamental noise calculations from
the transfer functions/calibrations that transform them to the
desired measurement basis?

10/18

common noise budget patterns

Meanwhile, we spend a lot of time working on general
experimental noise budgets (for LIGO, 40m, table-top
experiments, etc.)

Most noise budgets follow similar patterns:
Combination of measured and analytically-derived noise
terms.
Separation of noise sources and calibrations from sources to
measurement port.
Common functions for loading data, calculating spectra,
etc.
Standard plot styles.

Specifically for LIGO we want to re-write the LIGO (H1/L1)
noise budgets in python, share common code between sites,
export to nbweb, etc.

11/18

https://git.ligo.org/NoiseBudget/nbweb

a common noise budget tool?

If we need the same thing in pygwinc that we want for noise
budgeting in general, can pygwinc not just provide a
generalized noise budgeting tool? Possible roadmap:

Add generalized BudgetItem class for defining noise terms
and calibrations that can e.g. load static data, calculate
noise spectra, return PSD at specified frequency points.
Separate fundamental noise calculators from assumptions
about experiment topology.
Budgets become python module/package that defines
Noise and Calibration classes, and a .yaml file that
stores experimental parameters.

What follows is PRELIMINAY concept outline/prototype...

12/18

gwinc.nb.Noise class with analytic calculation

from gwinc import nb

class CoatingBrownian (nb. Noise):
""" Coating Brownian

"""
attribute for plotting style arguments
style = dict(

label ='Coat. Brown .',
color ='# fe0002 ',

)

method to calculate / return noise PSD
def calc(self):

self.ifo = gwinc . precompIFO (self.freq , self.ifo)
return noise . coatingthermal . coatbrownian (

self.freq ,
self.ifo ,

)

13/18

gwinc.nb.Noise for measured data

from gwinc import nb

class MICH(nb. Noise):
""" MICH Controls Noise

"""
style = dict(

label ='MICH ',
color =[0.20 , 0.10 , 1.00] ,

)

def calc(self):
excess power projection from witness to DARM
from broadband noise excitation
f_meas , S_proj = excess_power_projection_from_dtt (

lpath ('couplings / MICH_excitation .xml '),
'H1:LSC - MICH_OUT_DQ (REF7)',
'H1:LSC - MICH_OUT_DQ ',
'H1:CAL - DELTAL_EXTERNAL_DQ (REF6)',
'H1:CAL - DELTAL_EXTERNAL_DQ ',

)
return self. interpolate (f_meas , S_proj)

14/18

gwinc.nb for measured noise with calibration

from gwinc import nb

class ClosedLoopSensing (nb. Calibration):
def calc(self):

...
return cal

class Shot(nb. Noise):
""" AS PD shot noise

"""
calibration to be applied to PSD from self.calc ()
calibration = ClosedLoopSensing

NDS channel data to be fetched
nds_channels = [

'H1:OMC - DCPD_SUM_OUT16 ',
]

def calc(self):
data = self. nds_data ['H1:OMC - DCPD_SUM_OUT16 ']
...
return psd

15/18

executing gwinc.nb

>>> import numpy as np
>>> import gwinc
>>> Budget = gwinc . load_budget ('/path/to/ mybudget .py ')
>>> freq = np. logspace (1, 3, 1000)
>>> budget = Budget (freq)
>>> budget . execute ()
>>> gwinc . plot_noise (budget)

16/18

pygwinc H1 noise budget

101 102 103

Frequency [Hz]

10 21

10 20

10 19

10 18

10 17

10 16

Di
sp

la
ce

m
en

t [
m

/
Hz

]
GWINC Noise Budget: H1

DARM measured
Total
dark
shot
rad pres
OMC length

DAC
intensity
MICH
PRCL
SRCL
res gas

17/18

issues and plans

Have working prototype, but still very preliminary. More work,
code cleanup, refinement, etc. needed before official release.

Nonetheless, looking for feedback/thoughts on this approach.

Considerations:
Want to keep everything as conceptually simple and flexible
as possible. Don’t overly encode or enforce behavior.
Quantum noise is tricky, since it’s deeply embedded into
the overall experiment topology.
Add optimizations for “online” noise budgets.
Might need to break backwards compatibility with
matgwinc.

18/18

