pygwinc:
A roadmap to a generalized noise

budgeting tool for opto-mechanical
experiments

Jameson Graef Rollins
Christopher Wipf

IFO Simulations call
February 26, 2019

pygwinc is a pure-python port of the MATLAB-based
Gravitational Wave Interferometer Noise Calculator (GWINC):

https://git.ligo.org/gwinc/pygwinc

(Old MATLAB GWINC (“matgwinc”) has also moved to git:)

https://git.ligo.org/gwinc/matgwinc

https://git.ligo.org/gwinc/pygwinc
https://git.ligo.org/gwinc/matgwinc

m Collection of mostly analytic noise calculations for
LIGO-like interferometers.

m [FO “models” stored in YAML files.

m x1000 faster than MATLAB GWINC.

m Command line interface for plotting budgets from
IF0.yaml description files.

m Uses inspiral-range package for calculating range figures of
merit.

m Can use MATLAB python engine for
calculation/comparison with old MATLAB-based GWINC.

pygwinc YAML IFO model descriptions

Simple, readable, extensible,
common structured data
format for storing
experimental parameters.

aLIGO.yaml:

Infrastructure:
Length: 3995.0
ResidualGas:
mass: 3.35e-27
polarizability: 7.8e-31
pressure: 4.0e-07
Temp: 290.0
Laser:
Power: 125.0
Wavelength: 1.064e-06
Materials:
Coating:
Alphahighn: 3.6e-06
Alphalown: 5.1e-07
Betahighn: 1.4e-05
Betalown: 8.0e-06
CVhighn: 2100000.0
CVlown: 1641200.0
Indexhighn: 2.06539
Indexlown: 1.45
Phihighn: 0.00036
Phihighn_slope: 0.1
Philown: 5.0e-05

pygwinc usage

Load and plot budgets programmatically:

>>> import gwinc

>>> import numpy as np

>>> freq = np.logspace(l, 3, 1000)

>>> ifo = gwinc.load_ifo('aLIGO')

>>> ifo = gwinc.precompIF0(freq, ifo)
>>> noises = gwinc.noise_calc(freq, ifo)
>>> gwinc.plot_noise(ifo, noises)

or from the command line:

$ gwinc aLIGO

pygwinc noise budget plot

GWINC Noise Budget: aLIGO

10—21
=== Total —— Coat. Brown.
= Quantum Coat. Thermo.
—— Seismic Subs. Brown.
—— Newtonian Subs. TE
—— Sus. Thermal Excess Gas
10-22 4

10—23 4

Strain [1/VHz]

10-24 4

10! 102 103
Frequency [Hz]

6/18

pygwinc development

Initial motivation:
m Python.
m Better code management and quality control.

m Improve performance.

Semi-self-imposed constraints:

m Make it looks as much like matgwinc internally as possible,
to ease transition for developers.

m Retain backwards compatibility with matgwinc (ability to
load and execute existing matgwinc ifo.mat files).

m Strict validation with matgwinc.

pygwinc noise calculators

Basic noise function:

gwinc
gwinc
gwinc
gwinc
gwinc

gwinc.

gwinc
gwinc
gwinc

.noise

.noise

.noise.

noise

.noise.
.noise.
.noise

.quantum.shotrad
.noise.

seismic.seismic

.newtonian.gravg
.noise.

suspensionthermal.susptherm
coatingthermal .coatbrownian

.coatingthermal.thermooptic

substratethermal . subbrownian
substratethermal . subtherm

.residualgas.gas

More being added for Voyager, CE...

winc noise calculators

From gwinc.noise.coatingthermal:

def coatbrownian(f, ifo):
"""Optical coating Brownian thermal noise"""
Length = ifo.Infrastructure.Length
wBeam_ITM = ifo.Optics.ITM.BeamRadius
wBeam_ETM = ifo.Optics.ETM.BeamRadius
dOpt _ITM = ifo.0Optics.ITM.CoatLayerOpticalThickness
dOpt_ETM = ifo.Optics.ETM.CoatLayerOpticalThickness

compute Brownian noise for specified coating structure
SbrITM = getCoatBrownian(f, ifo, wBeam_ITM, dOpt_ITM)
SbrETM = getCoatBrownian(f, ifo, wBeam_ETM, dOpt_ETM)

n = 2 *x (SbrITM + SbrETM) * ifo.gwinc.dhdl_sqr

return n

Note very similar look to matgwinc (including MATLAB
struct-like data structure for IFO parameters).

pygwinc limitations

GWINC assumes a LIGO-like detector configuration, i.e.
suspended Michelson interferometer.

m Prevents encoded knowledge of the fundamental noise
sources from being used in other contexts, experimental
typologies, etc.

m Prevents use of more sophisticated tools for calculating
noise transfer functions (e.g. Finesse, Optickle, etc.)

Can we separate out the fundamental noise calculations from
the transfer functions/calibrations that transform them to the
desired measurement basis?

10/18

common noise budget patterns

Meanwhile, we spend a lot of time working on general
experimental noise budgets (for LIGO, 40m, table-top
experiments, etc.)

Most noise budgets follow similar patterns:

m Combination of measured and analytically-derived noise
terms.

m Separation of noise sources and calibrations from sources to
measurement port.

m Common functions for loading data, calculating spectra,
etc.

m Standard plot styles.

Specifically for LIGO we want to re-write the LIGO (H1/L1)
noise budgets in python, share common code between sites,
export to nbweb, etc.

https://git.ligo.org/NoiseBudget/nbweb

a common noise budget tool?

If we need the same thing in pygwinc that we want for noise
budgeting in general, can pygwinc not just provide a
generalized noise budgeting tool? Possible roadmap:

m Add generalized BudgetItem class for defining noise terms
and calibrations that can e.g. load static data, calculate
noise spectra, return PSD at specified frequency points.

m Separate fundamental noise calculators from assumptions
about experiment topology.

m Budgets become python module/package that defines
Noise and Calibration classes, and a .yaml file that
stores experimental parameters.

What follows is PRELIMINAY concept outline/prototype...

gwinc.nb.Noise class with analytic calculation

from gwinc import nb

class CoatingBrownian (nb.Noise):
"""Coating Brownian

attribute for plotting style arguments
style = dict(
label='Coat. Brown.',
color="'#£fe0002"',

method to calculate/return noise PSD
def calc(self):
self.ifo = gwinc.precompIF0(self.freq, self.ifo)
return noise.coatingthermal.coatbrownian(
self.freq,
self.ifo,

gwinc.nb.Noise for measured data

from gwinc import nb

class MICH(nb.Noise):
"""MICH Controls Noise

style = dict(
label='MICH',
color=[0.20, 0.10, 1.00],

def calc(self):

excess power projection from witness to DARM

from broadband noise excitation

f_meas, S_proj = excess_power_projection_from_dtt(
lpath('couplings/MICH_excitation.xml'),
'H1:LSC-MICH_OUT_DQ (REF7) ',
'H1:LSC-MICH_OUT_DQ',
'"H1:CAL-DELTAL_EXTERNAL_DQ (REF6) ',
'H1:CAL-DELTAL_EXTERNAL_DQ',

)

return self.interpolate(f_meas, S_proj)

gwinc.nb for measured noise with calibration

from gwinc import nb

class ClosedLoopSensing(nb.Calibration):
def calc(self):

return cal
class Shot(nb.Noise):
"""AS PD shot noise

calibration to be applied to PSD from self.calc()
calibration = ClosedLoopSensing

NDS channel data to be fetched
nds_channels = [
'H1:0MC-DCPD_SUM_0QUT16 "',

]

def calc(self):
data = self.nds_data['H1:0MC-DCPD_SUM_0UT16"']

return psd

executing gwinc.nb

>>> import numpy as np

>>> import gwinc

>>> Budget = gwinc.load_budget ('/path/to/mybudget.py')
>>> freq = np.logspace(l, 3, 1000)

>>> budget = Budget (freq)

>>> budget.execute ()

>>> gwinc.plot_noise (budget)

pygwinc H1 noise budget

GWINC Noise Budget: H1

10—16
= DARM measured DAC
m= Total —— intensity
dark —— MICH
-17 == shot - PRCL
10 E — = rad pres —— SRCL
OMC length res gas
N
I
2
€ 10718 4
=
c
(9]
§
o _ N
2 1077 o
A ‘_
[a] . !
10720 4 .
!
I
1072 e W
10t 102 103

Frequency [HZz]

issues and plans

Have working prototype, but still very preliminary. More work,
code cleanup, refinement, etc. needed before official release.

Nonetheless, looking for feedback/thoughts on this approach.

Considerations:

m Want to keep everything as conceptually simple and flexible
as possible. Don’t overly encode or enforce behavior.

m Quantum noise is tricky, since it’s deeply embedded into
the overall experiment topology.

m Add optimizations for “online” noise budgets.

m Might need to break backwards compatibility with
matgwinc.

18/18

