

## The LIGO 4km Vacuum System: Design, Construction, Features & Faults

Mike Zucker, LIGO Caltech & MIT

NSF Workshop on Large UHV Systems for Frontier Scientific Research LIGO Livingston Observatory

29-31 January, 2019

LIGO-G1900137

Caltech







# 30 years ago...









# Topics

Vacuum Equipment vs. Beamtubes VE construction Tube construction & Bakeout Performance Gotchas & Lessons Learned



#### LIGO is Really Two Vacuum Systems (at each site)

#### *Chambers, pumps, instruments-"Vacuum Equipment"*

- Houses detector apparatus
- Isolation (valves), access (doors)
- Electrical, mechanical, optical penetrations/interfaces
- Pumping & instrumentation
- Somewhat "conventional"
- F:A ~ 10<sup>-2</sup> ls<sup>-1</sup>cm<sup>-2</sup>

#### Beam tubes

- Just a long hole in the air; Never to be vented
- Highly "unconventional"
  - 10 million liters (per site)
  - 300 million cm<sup>2</sup> (per site)
  - 200 l/s char. conductance

#### • *F:A* ~ 10<sup>-5</sup> ls<sup>-1</sup>cm<sup>-2</sup>



#### **LIGO Vacuum Equipment, LHO Corner Station**



#### Modular Vacuum Equipment Design





GO

Zucker



# BSC chamber





- Ports < 35cm Ø: ConFlat<sup>™</sup>
- Ports > 35cm Ø: Dual O-ring
  - Treated Viton elastomer
  - Isolated pumped annulus between inner and outer seal
  - Permeation and damage tolerant

- 2.8m Ø x 5.5m h
- •Upper third removable dome
- Thin (10-15mm) 304L SS shell with welded stiffeners, F&D heads
- Combination of GTAW and plasma welding





## **BSC Equipment Installation**







#### Livingston ETM Y BSC "Cartridge" Installation 21 Feb '14







HAM chamber

\*

Zucker

50

Thursday.

1

 House complex input/ output optics

EAST

(--)

• 2.1m Ø x 2m w

 More than 70% of area is removable access doors











Passive 80K cryotraps pump water vapor released by detector components









## Pumping for Non-condensibles

- Maglev turbos for initial evacuation only
- Ion pumps assisted by NEGs in normal operation
- NO rotating or vibrating machinery allowed during interferometer operation



## LIGO Beamtube

- 9000 m<sup>3</sup> volume/site
- 30000 m<sup>2</sup> area/site
- 50 km of spiral welds
- ~10<sup>-9</sup> torr
- budget ~ \$40M (1997)
  \$2500/m
  \$50/lb

## **Beam Tube Properties**

| module length                            | 2 km                                              |
|------------------------------------------|---------------------------------------------------|
| 25 cm diameter pump ports/module         | 9                                                 |
| radius of beam tube                      | 62 cm                                             |
| volume of module                         | 4.831 x 10 <sup>6</sup> liters                    |
| area of module                           | $1.55 \text{ x } 10^8 \text{ cm}^2$               |
| initial pumping speed/surface area       | $1.94 \text{ x } 10^{-5} \text{ liters/sec/cm}^2$ |
| length/short section                     | 1.90 x 10 <sup>3</sup> cm                         |
| wall thickness                           | 3.23 x 10 <sup>-1</sup> cm                        |
| stiffener ring spacing                   | 76 cm                                             |
| stiffening ring width                    | 4.76 x 10 <sup>-1</sup> cm                        |
| stiffening ring height                   | 4.45 cm                                           |
| expansion joint wall thickness           | 2.67 x 10 <sup>-1</sup> cm                        |
| expansion joint convolutions             | 9                                                 |
| expansion joint longitudinal spring rate | 1.5 x 10 <sup>9</sup> dynes/cm                    |

## Residual Gas Pressure Limits in Beam Tubes

$$h(f) = 4.8 \times 10^{-21} R\left(\frac{x}{H_2}\right) \sqrt{\langle P(torr) \rangle_L}$$

| Gas Species         | R(x/H <sub>2</sub> ) | Requirement (torr)    | Goal (torr)           |
|---------------------|----------------------|-----------------------|-----------------------|
| H <sub>2</sub>      | 1.0                  | 1×10 <sup>-6</sup>    | 1×10 <sup>-9</sup>    |
| H <sub>2</sub> O    | 3.3                  | 1×10 <sup>-7</sup>    | 1×10 <sup>-10</sup>   |
| N <sub>2</sub>      | 4.2                  | 6×10 <sup>-8</sup>    | 6×10 <sup>-11</sup>   |
| СО                  | 4.6                  | 5×10 <sup>-8</sup>    | 5×10 <sup>-11</sup>   |
| CO <sub>2</sub>     | 7.1                  | 2×10 <sup>-8</sup>    | 2×10 <sup>-11</sup>   |
| CH <sub>4</sub>     | 5.4                  | 3×10 <sup>-8</sup>    | 3×10 <sup>-11</sup>   |
| AMU 100 hydrocarbon | 38.4                 | 7.3×10 <sup>-10</sup> | 7×10 <sup>-13</sup>   |
| AMU 200 hydrocarbon | 88.8                 | 1.4x10 <sup>-10</sup> | 1.4x10 <sup>-13</sup> |
| AMU 300 hydrocarbon | 146                  | 5×10 <sup>-11</sup>   | 5×10 <sup>-14</sup>   |
| AMU 400 hydrocarbon | 208                  | 2.5x10 <sup>-11</sup> | 2.5x10 <sup>-14</sup> |
| AMU 500 hydrocarbon | 277                  | 1.4×10 <sup>-11</sup> | 1.4×10 <sup>-14</sup> |
| AMU 600 hydrocarbon | 345                  | 9.0x10 <sup>-12</sup> | 9.0x10 <sup>-15</sup> |

Table 1: Residual gas phase noise factor and average pressure



## **Beam Tubes**



- 3.2 mm thick with external stiffeners
- Raw stock air baked 36h @ 455C
  - Final J<sub>H2</sub> < 1e-13 Tl/s/cm<sup>2</sup>
- coil spiral-welded into 1.2m tube 16m long
  - method adapted from sewer pipe industry
- 16m sections cleaned, leak checked
- FTIR analysis to confirm HC-free
- sections field butt-welded together in travelling clean room
- Over 50 linear km of weld

# **UGO**

#### Depleting Hydrogen from raw SS before tube fabrication: An economical alternative to high T vacuum bakeout

NSF

- SS sheet from mill is baked in air 36 hours at 455 °C
- (Hotter treatment deemed inadvisable due to carbide formation)
- Total dissolved hydrogen is reduced ~ 3x
- Remaining H is tightly bound, high activation T
- Care is required in welding to avoid re-introduction of H





## Leak Test "Coffin"







#### Beamtube Field Assembly







Weiss et al, T970111 LHO beamtube  $J(H_2O) \sim 8 \times 10^{-12} \text{ T I s}^{-1} \text{ cm}^{-2} \times (1000 \text{ h})/t$ 



#### **Unbaked Water Outgassing** (norm. to 1000 hours)



Fig. 4.5 Outgassing measurements for different H2O exposures during venting of a 304 stainless steel chamber of inner surface area 0.4747 m<sup>2</sup>. • Ambient air exposed, 7.8 ml absorbed;  $\Delta$  600 ml exposed, 16.8 ml absorbed; + 400 ml exposed, 9.2 ml absorbed: × 200 ml exposed, 7.2 ml absorbed; \$ 100 ml exposed, 3.6 ml absorbed; \* 10 ml exposed, 2.3 ml absorbed; No No Reprint No R 0.017 ml absorbed; Reprinted with permission from J. Vac. Sci. Technol. A, 11, p. 1702, M. Li and H. F. Dylla. Copyright 1993, AVS-The Science and Technology Society.

Li and Dylla (1993) Electropolished 304L 10 ppm water content air re-exposure J(H<sub>2</sub>O) ~ 4 x 10<sup>-12</sup> T l s<sup>-1</sup> cm<sup>-2</sup> x (1000 h)/t



経800超高真空用ダクトアウトガス測定

Saito et al (KAGRA, 2011) ECB 304L, 200C conditioning bake -40C dewpoint (127 ppm) re-exposure  $J(H_2O) \sim 2 \times 10^{-13} \text{ T l s}^{-1} \text{ cm}^{-2} \times (1000 \text{ h})/t$ 

- Tolerable pressure for  $H_2O \sim 1/10$  that for  $H_2$
- Passive 1/t desorption with time too weak
- Low-temperature bakeout was required
  - LIGO used 1-shot bakeout to save cost
  - Tubes can never be re-exposed to atmosphere •

Weiss et al. T940090 BTD at CB&I J(H<sub>2</sub>O) ~ 3 x 10<sup>-12</sup> T l s<sup>-1</sup> cm<sup>-2</sup> x (1000 h)/t (~ 10<sup>-16</sup> T l s<sup>-1</sup> cm<sup>-2</sup> post-bake)



## I<sup>2</sup>R Bakeout to Desorb Water





- $I_{DC} = 2,000 \text{ A}$
- 3 weeks @ 160ºC
- Final J<sub>H20</sub> < 2e-17 Tl/s/cm<sup>2</sup>













#### **Beam Tube Bakeout Results**

|                                              | Outgassing Rate corrected to 23 °C<br>torr liters/sec/cm <sup>2</sup><br>(All except H <sub>2</sub> are upper limits) |       |       |       |       |                     |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|---------------------|
| molecule                                     | Goal*                                                                                                                 | HY2   | HY1   | HX1   | HX2   |                     |
| H <sub>2</sub>                               | 4.7                                                                                                                   | 4.8   | 6.3   | 5.2   | 4.6   | × 10 <sup>-14</sup> |
| CH <sub>4</sub>                              | 48000                                                                                                                 | < 900 | < 220 | < 8.8 | < 95  | × 10 <sup>-20</sup> |
| H <sub>2</sub> O                             | 1500                                                                                                                  | < 4   | < 20  | < 1.8 | < 0.8 | × 10 <sup>-18</sup> |
| CO                                           | 650                                                                                                                   | < 14  | < 9   | < 5.7 | < 2   | × 10 <sup>-18</sup> |
| CO <sub>2</sub>                              | 2200                                                                                                                  | < 40  | < 18  | < 2.9 | < 8.5 | × 10 <sup>-19</sup> |
| NO+C <sub>2</sub> H <sub>6</sub>             | 7000                                                                                                                  | < 2   | < 14  | < 6.6 | < 1.0 | × 10 <sup>-19</sup> |
| H <sub>n</sub> C <sub>p</sub> O <sub>q</sub> | 50–2 <sup>†</sup>                                                                                                     | < 15  | < 8.5 | < 5.3 | < 0.4 | × 10 <sup>-19</sup> |

| air leak | 1000 | < 20 | < 10 | < 3.5 | < 16 | $\times$ 10 <sup>-11</sup> torr liter/sec |
|----------|------|------|------|-------|------|-------------------------------------------|
|----------|------|------|------|-------|------|-------------------------------------------|

\*Goal: maximum outgassing to achieve pressure equivalent to 10<sup>-9</sup> torr H<sub>2</sub> using only pumps at stations <sup>†</sup>Goal for hydrocarbons depends on weight of parent molecule; range given corresponds with 100–300 AMU

5/24/99 wea





## Sounds great- but WHAT WOULD WE DO DIFFERENTLY?



Photo credit: Hurricane Harvey and Richard Oram





### 20:20 Hindsight– What Worked Well for LIGO

- Low-hydrogen steel airbake process
- Spiral-welded tube construction (with aggressive QA)
- I<sup>2</sup>R bakeout heating
- Modular chamber & spool concept
- Soft-wall modular cleanrooms for installation
- Dual differentially-pumped O-rings on large flanges
- Passive LN<sub>2</sub> cryotraps
- > Ion pumps
- Two highly proficient and cooperative subcontractors
  - Chicago Bridge and Iron (beamtubes)
  - Process Systems International (vacuum equipment)



20:20 Hindsight— Not so much...



#### Large gate valves

- Have had two develop bizarre leakage through stem
- Serious and increasing concerns about fragility of the mechanism
- Microbial-induced corrosion
  - Leaks caused by SS-eating bacteria in Louisiana
  - Tube environment was not climate-controlled
  - Vermin and moisture "disease vectors"
- But our biggest regret of all is...



20:20 Hindsight– If I could turn back time...



# Budget constraints left us no standing provision to vent, re-evacuate and re-bake beamtubes in case of future contingency

LIGO-G1900137

Thanks for your attention

# **REFERENCE SLIDES**

#### I<sup>2</sup>R Bakeout to Desorb Water (cont'd)







## "Dubinin-Radeschevich Isotherm" desorption model





Weiss et al, LIGO-T970111

#### Postbake measurements of module X1 at Hanford

March 11-12, 1999

#### Table 1: Results from gas model solution of 16.9 hour postbake accumulation ending March 12, 1999 at 10:00AM.

| molecule                         | Outgassing rate @ 10C                       | pressure@ 10C               | outgassing rate @ 23C                        | pressure@ 23C             |
|----------------------------------|---------------------------------------------|-----------------------------|----------------------------------------------|---------------------------|
|                                  | torr liters/sec/cm <sup>2</sup>             | torr                        | torr liters/sec/cm <sup>2</sup>              | torr                      |
| H <sub>2</sub>                   | 1.6 x10 <sup>-14</sup>                      | 1.0 x 10 <sup>-9</sup>      | 5.2 x10 <sup>-14</sup>                       | 3.4 x 10 <sup>-9</sup>    |
| CH <sub>4</sub>                  | < 2 x 10 <sup>-20</sup>                     | $< 3.4 \text{ x } 10^{-13}$ | < 8.8 x 10 <sup>-20</sup>                    | < 1.5 x 10 <sup>-12</sup> |
| H <sub>2</sub> O                 | < 3 x 10 <sup>-19</sup>                     | < 5.2 x 10 <sup>-13</sup>   | < 1.3 x 10 <sup>-18</sup>                    | < 2.3 x 10 <sup>-12</sup> |
| N <sub>2</sub>                   | < 9 x 10 <sup>-19</sup> **                  | < 1.5x 10 <sup>-13</sup>    |                                              |                           |
| со                               | < 1.3 x 10 <sup>-18</sup>                   | < 1.7 x 10 <sup>-13</sup>   | < 5.7 x 10 <sup>-18</sup>                    | < 7 x 10 <sup>-13</sup>   |
| O <sub>2</sub>                   | < 1.2 x 10 <sup>-20</sup>                   | < 2.3 x 10 <sup>-14</sup>   |                                              |                           |
| Α                                | < 2.5x 10 <sup>-20</sup>                    | < 3.6 x 10 <sup>-14</sup>   |                                              |                           |
| CO <sub>2</sub>                  | < 6.5 x 10 <sup>-20</sup>                   | < 1.2x 10 <sup>-13</sup>    | < 2.9 x 10 <sup>-19</sup>                    | <5.2 x 10 <sup>-13</sup>  |
| NO+C <sub>2</sub> H <sub>6</sub> | < 1.5 x 10 <sup>-19</sup>                   | < 1.6 x 10 <sup>-13</sup>   | < 6.6x 10 <sup>-19</sup>                     | <7.2 x 10 <sup>-13</sup>  |
| $H_nC_pO_q$                      | ∑amu41,43,55,57<br><1.2 x 10 <sup>-19</sup> | < 2.2 x 10 <sup>-13</sup>   | ∑amu41,43,55,57<br>< 5.3 x 10 <sup>-19</sup> | < 9.7 x 10 <sup>-13</sup> |

Volume =  $2.4 \times 10^6$  liters and Area =  $7.8 \times 10^7$  cm<sup>2</sup>

\*\* The equivalent air leak into the module Q < 3.5x 10<sup>-11</sup> torr liters/sec from amu 28.

Correction from 10C to 23C uses a binding temperature of 8000K for hydrogen and 10000K for all other molecules

The data shows the outgassing rates of the tube are acceptable. The higher temperature bake at 168C for a shorter time has accomplished a better result than the longer bakes at 150C.

# End Station Pressure Evolution after



## Effects of Pump Distribution on Required J(H<sub>2</sub>O)



- Consider 4km aLIGO arm (1.2m ID) with 2 or 15 distributed pumps + cryotraps at ends
- Assign  $S_h^{1/2}(H_2^0) < 0.1 \text{ x min aL curve}^1$

→ $S_h^{1/2}$  (H<sub>2</sub>0) < 2.6 x 10<sup>-25</sup> Hz<sup>-1/2</sup>

Then<sup>2</sup>, for 2 pumps

**GO** 

 $J(H_2O)_{2p} < 2.0 \times 10^{-15} \text{ T I s}^{-1} \text{ cm}^{-2}$ 

and for 15 pumps

 $J(H_2O)_{15p} < 4.3 \times 10^{-15} \text{ T I s}^{-1} \text{ cm}^{-2}$ 

(no leaks, just autogenous water;  $F_i = 534$  l/s)

<sup>1</sup> T1400177, Fig. 3, "BNS Optimized 125W" <sup>2</sup> T1500202





