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The Sirens of August: Detection of Five Gravitational Wave Events in August 2017

Is Consistent With A Constant Rate
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August 2017 was a happy time for gravitational wave astronomy. Of the 11 gravita-

tional waves—10 binary black hole (BBH) mergers and one binary neutron star (BNS)

merger—detected to date by the Advanced LIGO (Aasi et al. 2015) and Advanced

Virgo (Acernese et al. 2015) instruments, five occurred in August 2017 (The LIGO

Scientific Collaboration & the Virgo Collaboration 2018): GW170809, GW170814

(Abbott et al. 2017a), GW170817 (Abbott et al. 2017b), GW170818, and GW170823.

Throughout LIGO’s second observing run (O2) there were (1, 0, 0, 0, 1, 1, 5) gravita-

tional waves from merging compact binary systems detected in January, February,

March, April, June, July, and August 2017 (we omit May because it comprises neg-

ligible observing time; O2 finished in August 2017). In LIGO’s first observing run

(O1) there were (1, 1, 1) compact binary detections in September, October, and De-

cember 2015 (we omit November because it also comprises negligible observing time).

Here we show that the outlier of five detections in August is nonetheless consistent

with a constant monthly detection rate. A constant spacetime merger rate density

is the starting point of merger rate analyses in The LIGO Scientific Collaboration &

the Virgo Collaboration (2018) and The LIGO Scientific Collaboration & The Virgo

Collaboration (2018); given the ∼ 5 Gyr of cosmic time probed by the O2 observa-

tions and the ∼ 10 Myr lower limit on the stellar evolution timescale of even the most

massive BBH progenitor systems, fluctuations in the detection rate would be over-

whelmingly likely to be of terrestrial origin and could indicate un-modeled systematic

effects in the instruments.

We ignore effects at the ∼ 10% level that could affect the detection rate, such as:

the varying length of calendar months, variations in detector sensitivity over O1 and
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O2, that the sensitivity in O1 is about 3/4 that of O2, variations in duty cycle over

O2, the addition of Advanced Virgo to the detector network in August 2017, etc.

There were eleven detections in ten months. The probability that a Poisson process

with a mean rate of 11/10 per month will have five or more events in one month is

' 0.54%. Over ten months, the probability that at least one month will have five

or more detections is ' 5.3%. Thus it is not particularly surprising that we see one

month with five detections.

The above simplistic analysis is but one choice from an entire menu of possible cal-

culations. For example, we could ask whether the detections in August are consistent

with the observed rate from the previous six months’ of data taking (answer: much

less so); or we could ask whether the detections in the second half of the combined

O1 and O2 runs are consistent with the rate from the first half (answer: much more

so). Or.... Most calculations from this menu will arrive at probabilities in the 1–10%

range. The simplistic analysis above also ignores that we have statistical uncertainty

in the mean rate; 11/10 detections per month is the most likely value, but the statis-

tical uncertainty is ∼ 1/
√

11 ' 30%. This uncertainty will also vary as the data are

grouped differently in each possible calculation discussed above.

An elegant way to simultaneously address the multiple comparisons problem and

rate measurement uncertainty is through multilevel modeling1 (Gelman & Hill 2006).

The starting point for a multilevel analysis is an independent fit of a Poisson rate to

each months’ data:

ni ∼ Poisson (Λi) , (1)

where ni is the number of detected events in month i and Λi is the Poisson mean rate

of detections in that month. At this point each months’ rate is treated independently

of the other months; this is certainly not an optimal model, since there is certainly

some month-to-month correlation. If we impose that the Λi are drawn from a common

distribution, say a normal:

Λi ∼ N(µ, σ) (2)

then the parameter µmeasures the mean of the monthly detection rate and σ measures

the amount of month-to-month scatter. The posterior distribution for the Λi, µ, and

σ given the monthly event counts ni is therefore

π (Λi, µ, σ | ni) ∝

[
Nmonth∏
i=1

Λni
i

ni!
exp [−Λi]φ (Λi | µ, σ)

]
p (µ, σ) , (3)

where p (µ, σ) is the prior we impose on µ and σ and φ (x | µ, σ) is the probability

density for a Gaussian with mean µ and standard deviation σ evaluated at x.

In this model, setting σ ≡ 0 forces a constant monthly rate; setting σ → ∞, we

recover independent fits to each months’ data. Reality is somewhere in between; the

1 Multilevel modeling is sometimes also called hierarchical modeling or population analysis. In an
astrophysical context, see Hogg et al. (2010), Mandel (2010), or, applied to gravitational waves, The
LIGO Scientific Collaboration & The Virgo Collaboration (2018).
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Figure 1. Inference on the per-month detection rate and the scatter parameter describing
the population of per-month rates. Left: the posterior on the mean per-month detection
rate, Λ, for each calendar month of O1 and O2 with significant observing time. The curves
are labeled by the month index (1 = January, 2 = February, etc). The August outlier is
apparent in the posterior for Λ8. Dashed curves give the posterior for a flat prior imposed
on each of the Λi; solid curves give the posterior under the multilevel log-normal prior. It is
apparent that this latter “shrinks” the monthly estimates toward a common rate. For both
the independent and pooled analyses there is some overlap in the posteriors, suggesting that
a constant monthly detection rate is consistent with our inferences. Right: the posterior
on the parameter σ that controls the scatter in the population of (log) detection rates. We
obtain σ = 0.54+0.20

−0.47 (median and 68% CI); the solid line indicates the median value, dashed
lines the 68% CI, and dotted lines the 95% CI (which includes σ = 0).

key insight of multilevel modeling is that we can allow the data to inform the value

of σ and the degree of “shrinkage” (e.g. Lieu et al. 2017) or “pooling” of the data in

the fit2. The multilevel model effectively explores all possible pooled combinations of

the data as σ varies, and chooses those that are consistent with the observed month-

to-month scatter, while accounting for the multiple comparisons and the varying

accuracy of the overall rate estimation with various poolings.

The result of a fit for the eleven Λi and µ and σ to the number of detections by month

is shown in Figure 1. We used broad N(0, 10) priors for both µ and σ. Such broad

priors have negligible effect on the posterior given the precision of our measurements of

µ and σ. The partially-pooled posteriors for the monthly rates Λi overlap significantly,

suggesting that a constant monthly detection rate is consistent with our data set.

This is confirmed by the posterior for the month-to-month scatter in the rate, which

includes σ = 0 in its 95% (“2σ”) credible interval. We therefore conclude that five

detections in August are consistent with a constant monthly detection rate throughout

O2.

2 Eq. (2) corresponds to imposing a white Gaussian process prior on the log detection rate. A
natural extension would be to introduce a temporal correlation length (Foreman-Mackey et al. 2014;
Kelly et al. 2014; Foreman-Mackey et al. 2017; Farr et al. 2018) in the prior so that the rate variations
have a degree of smoothness from month-to-month. But at this point we are probably getting too
far out ahead of our small data set....
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This document is LIGO Technical Report Number T1800529. A git repository

containing analysis code and this LATEX document can be found at https://git.ligo.

org/will-farr/TheSirensOfAugust.

Software: matplotlib (Hunter 2007), seaborn https://doi.org/10.5281/zenodo.

1313201,pymc3(Salvatier etal. 2016)

https://dcc.ligo.org/T1800529/public
https://git.ligo.org/will-farr/TheSirensOfAugust
https://git.ligo.org/will-farr/TheSirensOfAugust
https://doi.org/10.5281/zenodo.1313201
https://doi.org/10.5281/zenodo.1313201
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