

Gravitational Wave Observatories

Australian Institute of Physics Congress 12 December 2018

David Shoemaker For the LIGO and Virgo Scientific Collaborations

Credits

Measurement results: LIGO/Virgo Collaborations,

PRL 116, 061102 (2016); Phys. Rev. Lett. 119, 161101 (2017);

Phys. Rev. Lett. 119, 141101 (2017); Phys. Rev. Lett. 118, 221101 (2017);

Phys. Rev. Lett. 116, 241103 (2016)

Simulations: SXS Collaboration; LIGO Laboratory

Localization: S. Fairhurst arXiv:1205.6611v1

Slides from (among others) L. Nuttal, P. Fritschel, L. Cadonati

Photographs: LIGO Laboratory; MIT; Caltech; Virgo

100 years ago

- Albert Einstein was evaluating and processing patent applications...
 - » ...for transmission of electric signals and electrical-mechanical synchronization of time
 - » Musing on relative motion of electromagnetic transmitters and receivers
 - » → Special Relativity, 1905
- ...then dreaming of being in an elevator in space and asking if it is a pull on the cable or gravity...
 - → General Relativity, 1915
- Prediction of gravitational waves (GW) as a consequence of GR in 1916: (ok, right in 1918)

Näherungsweise Integration der Feldgleichungen der Gravitation.

Von A. Einstein.

 Notes that it is of no practical interest as it will not be possible to detect such a small effect

- Caltech and MIT propose to the NSF to establish Observatories
- Proposal states clearly that the initial detectors only have a chance of detections, and that upgraded detectors must be accommodated and foreseen

Proposal cover art →

LIGO-G1802297

1995-2000

- Caltech and MIT Build two Observatories and Initial Detectors
- R&D starts on upgraded detectors

■ Hanford Observatory →

LIGO-G1802297

2000-2015

- Virgo (French-Italian Collaboration) also builds an instrument
- Both instruments undergo 'commissioning' 2000-2005
- LIGO-Virgo Observed with the initial detectors 2005-2011
 - » saw no signals in 1+ years of observing

In parallel, the LIGO Scientific Collaboration and Virgo advance R&D for 2nd

generation detectors; LIGO Lab proposes in 2005

Project start in 2008, completion in 2015

- » on budget, on time
- Sensitivity target: 10x better in amplitude sensing
 - » We sense GW amplitude, which falls as 1/r
 - \rightarrow 10x reach \rightarrow 10³ more sources in reach

What are Gravitational Waves?

- GWs propagate at the speed of light (according to GR)
- Emitted from rapidly accelerating nonsymmetric mass distributions
- ullet Creates a strain h in space

$$h = \frac{\Delta L}{L} \approx \frac{1}{r} \frac{G}{c^4} \ddot{I}$$

r = distance from the source to the observer

Rotating
Dumbbell:
$$h \approx \frac{8GMR^2\omega_{orb}^2}{rc^4}$$

- Space is very stiff; h is ~10⁻²¹ for say Neutron Stars in Virgo Cluster
 - ...or two ~30-solar-mass Black Holes at 420 Mpc...
- Measurable GWs can only be expected from the coherent bulk motion of matter in the highly relativistic regime

What is our measurement technique?

- Enhanced Michelson interferometers
- GWs modulate the distance between the end test mass and the beam splitter
- The interferometer acts as a transducer, turning GWs into photocurrent proportional to the strain amplitude

- → multi-km installations
- Arm length limited by taxpayer noise....

 $h \approx \frac{\Delta L}{L}$

Magnitude of h at Earth: Detectable signals h ~ 10^{-21} (1 hair / Alpha Centauri) For L = 1 m, $\Delta L = 10^{-21}$ m

Time

photodiode

LIGO-G1802297

instrument is also more complex than a simple Michelson...

Measuring $\Delta L = 4 \times 10^{-18} \text{ m}$ Readout

- Shot noise ability to resolve a fringe shift due to a GW (counting statistics)
- Zum gegenwärtigen Stand des Strahlungsproblems,
 A. Einstein, 1909
- Fringe Resolution at high frequencies improves as as (laser power)^{1/2}

$$h_{\rm sn}(f) = \frac{1}{L} \sqrt{\frac{\hbar c \lambda}{2\pi P}}$$

 OzGrav/UA a key partner in establishing the path to our laser solution, and monitoring mirror deformation from absorption

Measuring $\Delta L = 4 \times 10^{-18} \text{ m}$ Readout

 Shot noise – ability to resolve a fringe shift due to a GW (counting statistics)

$$h_{\rm sn}(f) = \frac{1}{L} \sqrt{\frac{\hbar c \lambda}{2\pi P}}$$

 Radiation Pressure noise – buffeting of test mass by photons increases low-frequency noise – use heavy test masses!

$$h_{\rm rp}(f) = \frac{1}{mf^2L} \sqrt{\frac{\hbar P}{2\pi^3 c\lambda}}$$

- 'Standard Quantum Limit'
- OzGrav/ANU making 'squeezing' of light feasible, now being installed

Parametric Instabilities

- Radiation pressure can excite test mass resonances
- Test mass resonances can match optical mode frequencies
- Runaway oscillations possible
- Active and passive control scheme to suppress
- OzGrav/UWA established quantitative basis, prototype tests

LIGO-G1802297 12

Measuring ΔL = 4x10⁻¹⁸ m Internal motion

- Thermal noise kT of energy per mechanical mode
- Über die von der molekularkinetischen Theorie der Wärmegeforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, A. Einstein, 1905
- Simple Harmonic Oscillator:

$$x_{rms} = \sqrt{\langle (\delta x)^2 \rangle} = \sqrt{k_B T / k_{spring}}$$

• Distributed in frequency according to real part of impedance $\Re(Z(f))$

$$\widetilde{x}(f) = \frac{1}{\pi f} \sqrt{\frac{k_B T}{\Re(Z(f))}}$$

 Low-loss materials, monolithic construction

Measuring $\Delta L = 4 \times 10^{-18}$ m Internal motion

- Thermal noise kT of energy per mechanical mode
- Über die von der molekularkinetischen Theorie der Wärmegeforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, A. Einstein, 1905
- Simple Harmonic Oscillator:

$$x_{rms} = \sqrt{\langle (\delta x)^2 \rangle} = \sqrt{k_B T / k_{spring}}$$

• Distributed in frequency according to real part of impedance $\Re(Z(f))$

$$\widetilde{x}(f) = \frac{1}{\pi f} \sqrt{\frac{k_B T}{\Re(Z(f))}}$$

 Low-loss materials, monolithic construction

Measuring ΔL = 4x10⁻¹⁸ m Internal motion

Strain [11/Hz]

 In Advanced LIGO, the dielectric optical coating has a rather large loss tangent

» Some 10⁻⁴, compared to 10⁻⁸ 10⁻²¹ for fused silica

 And: the coating is the surface that is sensed by the laser

 This is the dominant limit in the critical 50-200 Hz band

 CSIRO helped develop and implement our coatings

Measuring ΔL = 4x10⁻¹⁸ m Forces on test mass

- Seismic noise must prevent masking of GWs, enable practical control systems
- aLIGO uses active servocontrolled platforms, multiple pendulums
- 3 layers, each of6 degrees-of-freedom

LIGO-G1802297 16

Keeping it all aligned

- So...
- 3 layers, each of6 degrees-of-freedom
- 4 cavity optics 'Test Masses'
- Beamsplitter, 'recycling' mirrors, filter cavities all suspended
- 4km baseline
- Micron motions at 1 Hz, 10⁻²⁰ m at 20 Hz; dynamic range
- Microradian alignment
- Guided control to from micron to picometer motion, coupled cavities on resonance
- Control system demands are extraordinary
- OzGrav/ANU contributed key ideas and parts of initial 'bootstrapping'

LIGO-G1802297 17

Measuring ΔL = 4x10⁻¹⁸ m Forces on test mass

 Ultimate limit on the lowest frequency detectors on- or under-ground:

 Newtownian background – wandering net gravity vector; a limit in the 10-20 Hz band

Measuring ΔL = 4x10⁻¹⁸ m Forces on test mass

- Advanced LIGO (and Virgo)
 expect to be limited by this noise
 source
 - » After all technical noise sources beaten down
 - » At low optical power (no radiation pressure noise)
 - » In the 10-30 Hz range
- We would *love* to be limited only by this noise source!
- Want to go a bit lower?
 Go underground.
- Want to go much lower?Go to space.

Adv LIGO Target Design Sensitivity, basic noise sources

Then there are the technical noise sources....

Then there are the technical noise sources....

Sensitivity for first Observing runs

The first GW detection

LIGO-G1802297 24

We measure *h(t)* – think 'strip chart recorder'

- The output of the detector is the (signed) strain as a function of time
- Earlier measurements of the pulsar period decay (Taylor/Hulse/Weisberg) measured energy loss from the binary system – a beautiful experiment
 - » radiation of gravitational waves confirmed to *remarkable* precision for 0th post-Newtonian
- LIGO can actually measure the change in distance between our own test masses, due to a passing space-time ripple
 - » Instantaneous amplitude rather than time-averaged power
 - » Much richer information!

LIGO-G1802297 **25**

The first GW signal observed by LIGO-Hanford, LIGO-Livingston and Virgo

Uncertainty in volume reduced ~34x

Antenna pattern for a single detector

- Maximal for overhead or underfoot source
- 1/2 for signals along one arm
- ...and zero at 45 degrees

LIGO-G1802297

Antenna pattern for a single detector

- Maximal for overhead or underfoot source
- 1/2 for signals along one arm
- ...and zero at 45 degrees
- GW170817 fell on Virgo close to 45 degrees!
- Did no harm for localization.
 (GW170814 proved the detector was working, happily)

GRB 170817A

GRB 170817A occurs (1.74 ± 0.05) seconds after GW170817

It was autonomously detected in-orbit by Fermi-GBM (GCN was issued 14s after GRB) and in the routine untargeted search for short transients by INTEGRAL SPI-ACS

Probability that GW170817 and GRB 170817A occurred this close in time and with location agreement by chance is 5.0x10⁻⁸ (Gaussian equivalent significance of 5.3σ)

GWs and Photons travel at the same speed to one part in 10¹⁵

BNS mergers are progenitors of (at least some) SGRBs

B. P. Abbott et al., Gravitational Waves and Gamma Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, 2017, ApJL in press. doi:10.3847/2041-8213/aa920c Time from merger (s)

3

Multimessenger Observations

Approximate timeline:

GW170817 - August 17, 2017 12:41:04 UTC = $\mathbf{t_0}$

GRB 170817A t₀ + 2 sec

LIGO signal found t₀ +6 minutes

LIGO-Virgo GCN reporting BNS signal associated with the time of the GRB t_0 +41 minutes

SkyMap from LIGO-Virgo t₀ + 4 hours

Optical counterpart found t₀ + 11 hours

- The localisation region became observable to telescopes in Chile 10 hours after the event time (wait for nightfall!)
- Approximately 70 ground- and space- based observatories followed-up on this event

Multi-messenger Astronomy

LIGO and Virgo signed agreements with 95 groups for EM/neutrino followup of GW events

- ~200 EM instruments satellites and ground based telescopes covering the full spectrum from radio to very high-energy gamma-rays
- Worldwide astronomical institutions, agencies and large/small teams of astronomers

Masses in the Stellar Graveyard

LIGO Scientific Collaboration and Virgo Collaboration

~1500 members, ~120 institutions, 21 countries

What does the future hold?

LIGO-G1802297 43

Planned Observing Timeline

Binary Neutron Star Range

B. P. Abbott et al., *Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA*, 2016, Living Rev. Relativity 19

LIGO-G1802297

Planned Observing Timeline

B. P. Abbott et al., *Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA*, 2016, Living Rev. Relativity 19

LIGO-G1802297

The advanced GW detector network

2018-19 Sensitivity/configuration:

3 detectors, perhaps ~1 signal per week

2025 Sensitivity/configuration:

5 detectors (add India and Japan) far improved source localization

LIGO A+ Upgrade

- Incremental changes to the Advanced LIGO design
 - » Similar changes planned for Virgo
- Rough doubling of reach

$$^{\circ}$$
 2³ = 8 \rightarrow

- » 17-300 BBH/month
- » 1-13 BNS/month
- » 2-11 BNS x SGRB coincidences/year
- Population studies
- Hubble Constant

Plan to be observing ~2024

Designing instruments for Astrophysical goals

Suppose we want to focus on the nuclear physics of Neutron Stars –

L. Baiotti, and L. Rezzolla (2017)

Merger remnants:

Hyper-massive neutron star (HMNS) or Super-massive neutron star (SMNS)

> Oscillation mode (or GW) frequency is around 2kHz - 4kHz

Encoding rich information about equation of state (EOS) of hot, dense nuclear matter

Having EM counterpart (multi-messenger observation)

Denis Martynov 50

A 'Neutron Star Explorer'

- Target the 1-5 kHz range
- Modest length requirements
- Stressful on the optical design (high circulating power)
- ...easy on the $1/f^n$ noise sources
- OzGrav future detector working group

3G: Make Advanced LIGO 10x longer, 10x more sensitive, 1000x event rate

Signal grows with length – *not* most noise sources

- Thermal noise, radiation pressure, seismic, Newtonian unchanged
- Coating thermal noise improves faster than linearly with length
- 40km surface Observatory 'toy' baseline
 - > can still find sites, earthmoving feasible; costs another limit...
- Concept offers sensitivity without new measurement challenges; could start at room temperature, modest laser power, etc.

	Adv. LIGO	40 km LIGO
Arm length	4 km	40 km
Beam radius	6.2 cm	11.6 cm
Measured squeezing	none	5 dB
Filter cavity length	none	1 km
Suspension length	0.6 m	1 m
Signal recycling mirror trans.	20%	10%
Arm cavity circulating power	775 kW	
Arm cavity finesse	446	
Total light storage time	200 ms	2s

Reach of 3G detectors for BH: Edge of the universe

3rd Generation

- When could this new wave of ground instruments come into play?
- Appears 15 years from t=0 is a feasible baseline
 - Initial LIGO: 1989 proposal, and at design sensitivity 2005
 - » Advanced LIGO: 1999 White Paper, GW150914 in 2015
- Modulo funding, could envision 2030's
- Should hope and strive and plan to have great instruments ready to 'catch' the end phase of binaries seen in space-based LISA
- Worldwide community working together on concepts and the best observatory configuration for the science targets
 - » GWIC Gravitational-Wave International Committee '3G subcommittee' producing a careful study for early 2020
- Crucial for all these endeavors: to expand the scientific community planning on exploiting these instruments far beyond the GR/GW enclave
 - » Costs are like TMT/GMT/ELT needs a comparable audience
 - » Events like GW170817 help!

LIGO-G1802297

58

Broad spectrum of GW sources

- 2.5x10⁶ km arms: moves best sensitivity to 0.01
 Hz, target masses to 10⁶ solar masses
- 'Slave' the shield satellites to follow the test masses, protecting against solar wind etc.
- Orbit scans sky; sources last years, viewed from 2AU baseline
- Launch in the early 2030's

LISA Astrophysics

Just the beginning of a new field – new instruments, new discoveries, new synergies

