
Rescaling VT factors to match tabulated VT averages

R. O’Shaughnessy, D. Wysocki

The injection VT code produces 〈V T 〉 for several reference populations, using MC. The pop-
ulation codes (which work with occasionally very narrow distributions) work with analytic ap-
proximations V Tana to V T (m1,m2, χ1,z, χ2,z). We need a parameter-dependent correction factor
f(m1,m2, χ1, χ2) so V T ' fV Tana, chosen so we reproduce the tabulated averages 〈V T 〉.

I. ARGUMENT: LEAST SQUARES FOR
MULTIPLICATIVE CORRECTION FACTOR

Notation For notational brevity, let x denote binary pa-
rameters m1,m2, χ1,z, χ2,z; let g be our analytic refer-
ence model for V T ; let Λ denote model hyperparameters
and p(x|Λ) be distributions binary parmaeters give hy-
perparameters. Let y1 . . . yN denote the list of all possible
values of 〈V T 〉 computed by injections (including their
Monte Carlo error σ2

1 . . . σ
2
N)

The injection codes compute 〈V T 〉 ≡∫
dxp(x|Λ)V Ttrue(x), with some Monte Carlo er-

ror. Our analytic approximations, with a correction
factor, compute

y = 〈V T 〉 =

∫
dxp(x|Λ)V T (x)f(x) (1)

Least-squares approximation: We expand our pro-
posed correction factor in basis functions f(x) =∑
α Fα(x)λα. We minimize the likelihood

lnL = const−
∑
k

(yk −
∑
α

Hkαλα)2/2σ2
k (2)

where H is the precomputed matrix of weight “moments”

Hk,α =

∫
dxp(x|Λk)V T (x)Fα(x) (3)

This standard least squares problem has a solution

λ = (HT γH)−1HT γy (4)

where γ is a diagonal inverse covariance matrix for the
measurements (ie. diagonal elements are 1/σ2

1 , . . .)

Proposed correction factor: We only have of order
152 reference values, and we’re performing a correction
to V T (numerically tricky) rather than to lnV T (numer-
ically more stable, but not permitting closed-form solu-
tions). We propose low-order quadratic basis function in
m1,m2

Potential problems: This doesn’t guarantee f is
positive-definite over the range of interest

Estimated correction factor: Using the VT values
provided by the injection code, we estimated λαand
therefore the correction function

∑
α Fαλα for several

choices of basis functions

II. CALIBRATION RESULTS

We measured the calibration factors using three choices
of basis:

1. scalar: {1}

2. linear: {1,m1,m2}

3. quadratic: {1,m1,m2,m1m2,m
2
1,m

2
2}

The coefficients measured for each of these are included
in this DCC document, under the filenames:

1. calibration scalar.json

2. calibration linear.json

3. calibration quadratic.json

These are in the JSON format (equivalent in this
case to the notation for Python dict’s and list’s), for
loading them in Python see the docs for json.load
(Python2.7, Python3.7). We stored the full output
of numpy.linalg.lstsq here, but to use the results
all you’ll need is the "coeffs" field, and possibly the
"basis" field for convenience.

Note that for the calibration, we used semi-analytic
V T ’s with a fiducial observing time of 1day, the
SimNoisePSDaLIGOEarlyHighSensitivityP1200087
PSD, and a detection threshold of ρ > 8 in one IFO. We
used reweighted injection V T ’s with pyCBC used for
the detection threshold, and the observing time equal to
all of O1 and O2. If you use these numbers, be careful
that you set T = 1day.

2

Example to load the JSON files in Python (should work in both Python 2 and 3). Also in this DCC document as
coeff example.py.

import json

Uncomment the one you'd like to use.
#fname = calibration_scalar.json
#fname = calibration_linear.json
fname = calibration_quadratic.json

Defining the basis functions in a lookup table, so we can use the
"basis" field in the JSON files to figure out which one to use,
rather than have to hard-code anything.
basis_scalar = [

lambda m1, m2, a1z, a2z: 1.0,
]
basis_linear = basis_scalar + [

lambda m1, m2, a1z, a2z: m1,
lambda m1, m2, a1z, a2z: m2,

]
basis_quadratic = basis_linear + [

lambda m1, m2, a1z, a2z: m1*m2,
lambda m1, m2, a1z, a2z: m1**2,
lambda m1, m2, a1z, a2z: m2**2,

]
bases = {

"scalar" : basis_scalar,
"linear" : basis_linear,
"quadratic" : basis_quadratic,

}

with open(fname, "r") as calibration_file:
calibration_info = json.load(calibration_file)
coeffs = calibration_info["coeffs"]
basis_fns = bases[calibration_info["basis"]]

def f(m1, m2, a1z, a2z):
"""
This is the correction factor function.
Now anytime you evaluate VT(m1, m2, a1z, a2z), be sure to multiply
by f(m1, m2, a1z, a2z), so
vt_corrected = VT(m1, m2, a1z, a2z) * f(m1, m2, a1z, a2z)
"""
return sum(

c * g(m1, m2, a1z, a2z)
for c, g in zip(coeffs, basis_fns)

)

