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Abstract

I. INTRODUCTION

Gravitational-wave science, which started in earnest with the
first detection of gravitational-waves in 2015 [1], has immense
unexplored potential. Aiming to exploit this potential, the next
generation of detectors is being designed [2, 3] and plans for
their construction are taking shape. It is clear that to get the
most science out of the gravitational-wave signals we detect,
a network of large-scale observatories will be required. At
present there are many unanswered questions about how best
to construct such a network.

In this paper, we will address several of the fundamental
questions required to maximize the scientific potential of a
terrestrial gravitational-wave detector network. These ques-
tions include: Which science goals are sensitive to the location
and orientation of the detectors in the network? How the does
design of the network’s constituents impact its output? What
science can be done with a heterogeneous mix of second and
third generation detectors?

In the past, “optimizing the science” from gravitational-wave
astronomy has been less of an exercise in network optimiza-
tion and more an exercise in optimizing the performance of
single detectors, as measured via metrics such as the “inspiral
range”—the distance (or redshift) out to which each detec-
tor could detect a model system (usually a 1.4-1.4 M, binary
coalescence) with a certain signal-to-noise ratio cite—or the
detector’s strain sensitivity [4]. Modern examples of these
single-detector metrics are given in Fig. 1 and Fig. 2.

There are early examples of what could be called network
optimization, such as the decision to coalign the Hanford and
Livingston facilities to maximize coincident detections and
the longstanding desire to have at least three widely separated
facilities in order to triangulate source positions on the sky.
However, systematic studies of gravitational-wave detector
network optimization, measured quantitatively via a set of
metrics, are relatively recent. Raffai et al. [5] optimized the
facility placement of a set of triangular (Einstein-Telescope-
like) detectors as well as the placement of a LIGO facility in
India. This procedure was then generalized by Hu et al. [6].
Michimura et al. [7] optimized the optical configuration of
the Kagra detector [8] with respect to the sky localization
performance of the global advanced detector network.

More generally, others have already examined the per-
formance of a limited number of plausible third-generation
gravitational-wave networks against some set of metrics. The
binary-neutron-star (BNS) localization capabilities of net-
works with third-generation detectors has been explored by
Mills et al. [9]. The binary-black-hole (BBH) parameter es-
timation capabilities—including masses, spins, redshift, and
localization—of networks with third-generation detectors has
been explored by Vitale and Evans [10] and Vitale and Whit-
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FIG. 1: Astrophysical reach [12] of selected second- and third-
generation detectors for equal-mass, nonspinning binaries, shown
as a function of total source-frame mass. The binaries are distributed
isotropically in sky location and inclination angle. The solid lines
denote the horizon—the redshift beyond which none of the sources
are detected. The shaded bands then show the redshifts at which 10%
and 50% of the sources would be detected. Here a source is assumed
to be detected if it appears in a detector with matched-filter signal-to-
noise ratio p > 8. The detectors considered here are Advanced LIGO
(aLIGO) [13], Voyager [14], Einstein Telescope (ET) [2], and Cosmic
Explorer (CE) [3]. The astrophysical reach is the cosmological gener-
alization of various luminosity-distance measures (such as the inspiral
horizon distance [15]) that have been used to characterize detector
performance.

tle [11].

While these works evaluate the performance of some net-
works, and optimize a few sets of detectors for a few perfor-
mance metrics, they do not address the critical questions posed
earlier in this section. In our work, we present in full the perfor-
mance of a large ensemble of networks against a list of metrics,
in order to see the full landscape of network performance. This
allows us to say not only whether an optimum exists for some
particular metric, but whether the range of performance for
different network realizations is large enough to even warrant
optimization.

II. METRICS TO CONNECT NETWORK PARAMETERS
WITH SCIENCE GOALS

The questions raised in Sec. I naturally drive one to “op-
timally” choose the network parameters—the number, type,
location, and orientation of third-generation instruments across
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FIG. 2: Effective sensitivities of selected second- and third-generation
detectors for monochromatic sources distributed isotropically in sky
position, inclination, and polarization. The solid lines denote the
effective strain sensitivity for an optimally oriented source. The bands
then denote the effective sensitivity for the best 10% of sources, and
the median source. The detectors considered here are Advanced LIGO
(aLIGO), Voyager, Einstein Telescope (ET), and Cosmic Explorer
(CE).
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FIG. 3: Anticipated procedure for determining an optimal network
configuration from a set of science goals.

the globe—based on the needs of the science goals, such as
determining the history of star formation, testing corrections
to general relativity, uncovering the nuclear physics inside neu-
tron stars and supernovae, and constraining the dark energy
equation of state. Each of these science goals involves a vari-
ety of data analysis techniques and scientific products whose
connection to the network parameters is not immediately obvi-
ous. While one could imagine an optimization procedure that
connects each network parameter (the location of a particular
facility, for example) to each science goal (the dark energy
equation of state, for example), such a procedure results in
a set of connections that is opaque and can quickly grow to
encompass a large number of variables.

For these reasons, network optimization studies [5—7] focus
on optimizing a smaller number of metrics, by which we mean
intermediate data products that have a reasonably clear depen-
dence on the network parameters and which then feed into the
more specialized analysis that is used to achieve the science
goals. Such metrics include signal-to-noise ratio, polarization
sensitivity, and source localization (see Fig. 3).

In addition to choosing a set of metrics, one must also choose
what percentile to optimize for. Certain studies benefit from
the large statistics of the total population of events, thereby
suggesting that metrics should be optimized for the median

Code Location Lat. Long. Oxe
H Hanford, USA 46.5 -119.4 126
L Livingston, USA 30.6 -90.8 -162
v Pisa, Italy 43.6 10.5 71
I* India 14.2 76.4 45
K Kamioka, Japan 36.4 137.3 28
E* Europe 474 8.5 11
A* Western Australia -31.5 118.0 -58
U* Utah, USA 40.8 -113.8 -30

TABLE I: Coordinates and orientations for the facilities considered in

this work. Oxg is the counterclockwise angle from due east made by

the X-arm (or for ET, by any one of the sides of the triangle). Facilities

with an asterisk have not been constructed and the coordinates are
chosen for illustrative purposes only.

event. Other studies benefit from collecting a few of the loudest
events, thereby suggesting that metrics should be optimized for
loudest events. Still other studies require collecting a few rare
or special events, which may not be captured in the generic
metrics; these studies may prefer to optimize the median event
o as not to lose out on the rare events.

In the following section we choose a few example metrics
and explore how different third-generation networks perform.
(ME: say more about how our choices link back to science)

III. METRICS

As illustrative examples we choose

1. the sky localization area of 1.4—1.4 M binary neutron
star coalescences at redshift z = 0.3, a metric useful for
assessing the feasibility of electromagnetic followup;

2. the signal-to-noise ratio of 30-30 M., binary black hole
coalescences at redshift z = 2, a metric for quantifying
the quality of the most frequent events;

3. the distance uncertainty (or equivalently, redshift uncer-
tainty) of the 30-30 M, binary black hole coalescences
at z = 2, a metric useful for assessing the constrain-
ing power of third-generation networks on the stellar
evolution history of the universe;

4. the inclination angle uncertainty of the same 30-30 M,
systems at z = 2, which is representative of the net-
work’s ability to distinguish between gravitational-wave
polarizations; and

5. the signal-to-noise ratio of a high-frequency strain signal,
a metric useful for studies of the post-merger signal in
neutron star coalescences.

In all cases the components of the binary are non-spinning and
have equal mass. Sky locations, inclinations, and polarization
angles are isotropic.

In order to assess the access of a set of gravitational-wave
detectors to a given science goal, we evaluate each of the
above example metrics for an ensemble of networks composed
of the set of detectors under consideration. For example, a
network composed of one evolved second-generation detector
and two third-generation detectors (e.g., the Voyager, ET and
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TABLE II: Composition of the fixed network configurations, shown
as stars in the subsequent plots.

CE, each with astrophysical reach shown in Fig. 1) has many
potential realizations: the CE and ET detector locations and
orientations are as yet undefined, and there are multiple existing
2G facilities which can play the role of the third detector.

For the random network instances in each ensemble, the
following procedure is applied to generate a specific set of
facilities and detectors. The third-generation facilities (Ein-
stein Telescope and Cosmic Explorer) are allowed to be placed
anywhere on the globe with any orientation [16]. The second-
generation facilities (i.e., Voyager) are drawn randomly from
the five existing or planned second-generation facilities; Han-
ford, Livingston, Virgo, LIGO India, and Kagra. Any network
realization with the detectors placed too close together (area
of the triangle spanned by the detectors is less than 0.25r4?) is
rejected. For each class of network we simulate 100 network
realizations, except for the case of three Voyagers, for which
the total number of three-facility combinations is 10.

In order to highlight likely (or at least plausible) network
configurations, for each set of detectors one network config-
uration is generated from a finite set of facility sites whose
coordinates are given in Tab. I. The resulting set of network
configurations is given in Tab. II, and in the subsequent plots
there networks are shown as stars.

For each network, the resulting SNRs, localizations, and
distance uncertainties of the events are calculated. No SNR
cuts or trigger thresholds are applied.

A. Localization of neutron-star binaries at z = 0.3

Out to redshift z = 0.3, one may reasonably expect >500
binary neutron star coalescence events to pass through the
earth every year, even assuming a pessimistic merger rate
~100 Gpc~3 yr~!. These events, if sufficiently localized, will be
within the followup capabilities of next-generation telescopes.

With a network of three separate detector facilities, events
can be localized to two ellipses located antipodally on the
sky. The degeneracy between the two ellipses can be broken
by the inclusion of prior information based on the detectors’
antenna patterns. In this work we compute the localization area
(90% confidence interval) via the basic Fisher matrix procedure
described in Singer and Price [17, §B], with uniform priors.

In Fig. 4 we plot the resulting distributions for the median
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FIG. 4: Distribution of best 10% sky localization areas for randomly

simulated networks, shown for z = 0.3 and M} = M, = 1.4 M. The

horizontal axis denotes the area of the triangle spanned by the three
detectors in units of earth radii squared.
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FIG. 5: Scatter plot showing median localization and best 10% lo-
calization for z = 0.3 and M, = M, = 1.4 M. The HLV point is
omitted.

and best 10% localizations, with the networks sorted by the
area spanned by the three detectors. As expected, the local-
ization performance scales inversely with the area. It is also
clear that each addition of a 3G detector to the network sig-
nificantly improves the network’s localization capability. A
network composed of two 2G detectors and one 3G detector
is roughly a factor of 3 better than a baseline set of three 2G
detectors. Including two 3G detectors offers and order of mag-
nitude improvement over the baseline, while a full 3G network
offers another factor of 4 or 5, with a significant fraction of
localizations below 1 deg?.

In Fig. 5 we plot the best 10% localizations against the
median localizations. This result shows that these two metrics
are highly correlated, indicating that there is no need to trade
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FIG. 6: Scatter plot showing median SNR and best 10% SNR for a
M, = M, = 30 M,, binary black-hole coalescence at redshift z = 2.

high performance on the best events for good performance on
the majority of events, at least for localization capability.

B. Signal-to-noise ratios of black holes at z = 2

The distribution of matched-filter network signal-to-noise
ratios for a population of 30-30 M, black hole binary coales-
cences at z = 2 is shown in Fig. 6. Unlike the distribution of
localizations, the distribution of SNRs has comparatively little
dependence on the location and orientation of the detectors;
instead, the network performance is determined predominantly
by the network composition, with a scatter $30%.

For the networks consisting of two or more third-generation
detectors, a slight anticorrelation of the median and best 10%
SNRs can be observed. This can be explained as follows: in all
cases the network SNR is dominated by the SNR of the third-
generation detector(s) (see Fig. 1). For networks with only one
third-generation detector, the network SNR is therefore de-
termined by the antenna pattern of the single third-generation
detector regardless of its location and orientation. For networks
with two or three third-generation detectors, if these detectors
are placed so that their antenna patterns mostly overlap, they
will jointly detect events at the antenna pattern maxima with
good SNR at the expense of events that are incident close to
the antenna pattern minima. This leads to enhanced SNR for
the best 10% of events and diminished SNR for the median
events. Conversely, if these detectors are placed so that their
antenna patterns are oriented distinctly, then the network an-
tenna pattern is more isotropic, leading to better SNR for the
median events and worse SNR for the best 10% of events.

C. Redshift uncertainties for binary black holes at z = 2

Precise measurements of black hole redshifts at z = 1 can
constrain the redshift distribution of black hole binaries, and
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ties for z = 2 and M|, = M, = 30 M,,. The HLV point is omitted.

hence the star formation rate and the delay time from star
formation to merger [18]. Measurement of the redshift is also
critical to determining the source-frame mass of the component
black holes, thus their astrophysical origin.

Fig. 7 shows the median redshift uncertainties for 30-30 M,
black hole binaries coalescing at z = 2.

Disentangling the distance (and hence redshift) information
from inclination requires good discrimination of the polariza-
tion of the incident wave cite.

To quantify the polarization discrimination ability of a par-
ticularly network, we can collect the the N detector response
tensors, each with five independent components, into an N X 5
matrix and compute its condition number (appendix A).

Fig. 8 shows the median and best 10% redshift uncertainties
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for 30-30 M, black hole binaries coalescing at z = 2.

D. Inclination angle uncertainty for black holes at z = 2
E. Signal-to-noise ratios at high frequency

Gravitational-wave observations at the kilohertz scale can
reveal information about nuclear processes from newly merged
neutron stars (the so-called “post-merger” phase of the wave-
form) [19, 20] and from supernovae [21]. There is consider-
able uncertainty in the waveforms produced from these events.
Therefore, we construct a metric consisting of a uniform strain
h(f) = 1 x 1072 Hz™! from 400Hz to 4 kHz and zero else-
where; this frequency range encompasses the frequency spectra
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FIG. 11: Median and best 10% high-frequency signal-to-noise ratios
for a distribution of 3G networks, assuming a frequency-independent
strain g = 1 X 107%.

predicted from multiple neutron-star post-merger models and
supernovae?.

The resulting distributions of signal-to-noise ratios, plotted
as median versus best 10%, is shown in Fig. 11. Changing the
uniform strain to a frequency-dependent strain a(f) o 1/f/?
does not substantively alter the trends shown in Fig. 11. The
conclusion from this plot is very similar to that of SNR for
binary black hole systems in Fig. 6: while there is an anti-
correlation between the best and the median SNR for networks
involving 3G detectors, the magnitude of the effect is too small
to be a strong driver of network design choices.

IV. DISCUSSION

First, the performance of a three-detector network is deter-
mined primarily by its composition, rather than the location
and orientation of its detectors. This is particularly evident
for the signal-to-noise ratio metrics. For the localization met-
rics, the network area has a large effect on the performance,
but nonetheless this effect is subdominant to the effect of the
network composition: the few best networks containing two
third-generation instruments are able to outperform only the
few worst networks containing three third-generation instru-
ments, for example.

Second, there is not much difference between ranking net-
works by their median performance or the performance for
the best 10% of events. In the signal-to-noise ratio metrics
one observes a slight anti-correlation, particularly for networks
with two or three third-generation detectors, but this is a <30%
effect.

(ME: Say more here!)



Appendix A: Network orthogonality

This appendix describes the network orthogonality parame-
ter described in the main text.

The astrophysical strain incident on a detector network is
described by a symmetric, traceless Cartesian tensor of order
2; its matrix representation is

Hyy Hyp His
H=|Hy, Hy Hxjl|,
Hi3 Hy; Hsj

(AD)

with the additional constraint H; + Hy + Hzz = 0.

Correspondingly, the response of each detector to H is also
a symmetric, tranceless Cartesian tensor of order 2, defined
as the difference of the outer products of the detector’s arm
vectors. Explicitly, for the ith detector in a particular network,
the detector tensor is

1

Do — 5 [Xo‘)g(i) _ Q(ﬂf((i)]_ (A2)

The SNR-weighted strain signal appearing in the ith detector
is given by the double contraction of D and H into a scalar:

D =pDM : H (A3a)

KN = p™MDM : H, (A3b)

A symmetric, traceless order-2 tensor in R? has five indepen-
dent components, meaning that both H and the detector tensors
can be written in terms of five basis vectors Eq,..., Es; [22]
the Cartesian matrix representation of one such (orthonormal)

basis is
(1 00
Ei=5[0-10 (Ada)
000
1
5(3 0 0
E, = 50%0 (A4b)
00 -1
(010
E;==[100 (Adc)
2loo o
L(001
E.=-l000 (Add)
2100
(000
Es=-|001 (Ade)
2010

With this representation, the system of equations (A3) can
instead be written as a matrix equation

WD = M(ij)H(j), (A3)

where HY) = H : EY) are the elements of a 5-element column
vector, and M) = p@D® : EV) are the elements of an N X 5
matrix M.

The network orthogonality is then defined as the ratio of the
largest to smallest nonzero singular values of M:

_ max{oso(M)}

KO0 = Sinfo. @) "o

which coincides with the standard definition of matrix condi-
tion number if all of the singular values of M are nonzero.
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