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Why are coatings an issue?

A+LIGO
T = 300 K
ϕ ~ ϕaLIGO /4

LIGO-T1800042 ET-0106C-10

ET-LF
T = 10 K
ϕ~ ϕaLIGO/3

• Thermal noise limits mid-band 
sensitivity

• Coatings dominate thermal noise

Voyager
T = 123 K
ϕ ~ ϕaLIGO /4

LIGO-T1400226
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Thermal Noise in IF Mirrors

• Oversimple: kT of energy per mechanical mode, viscous damping
– moves front of mirror w.r.t. center of mass

• For coating dominated noise
and structural damping:
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Basic Coating Concepts

• Dielectric mirror
– alternating high/low index ¼ wavelength-thick layers
– large index contrast ⇒ fewer required layers:

• Key optical properties
– absorption, scatter – ppm’s 
– industry standard: ion-beam sputtering

R.T. deposition followed by 300 C – 500 C annealing
– scaling to >30 cm nontrivial

with ~1 nm RMS figure: LMA, Lyon
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Typical Requirements

• Explorer:
– A+ or Voyager coating  solution can be applied

though larger optics and higher power

• No magic bullet solution meets all requirements
– brief view of physics to motivate approaches

• Present examples of representative approaches 

T (K) λ (μm) φ /φa-LIGO HR abs.
A+ 300 1 1/4 0.5 ppm
Voyager 123 ~2 1/4 2 ppm
ET-LF 10 – 20? 1.5? 1/3 ~1-5 ppm



The Context of Coatings Development

• Materials • Deposition and related
metrology

G. Cagnoli



bulk SiO2

K.A. Topp, Z. Physik B Condensed Matter 101 235–45 (1996)

General Observations About Coating Elastic Loss

• Volume rather than interface losses dominate in tantala/silica mirror

– current values: Ti:tantala ~5x lossier than silica 

• Typical behavior vs temperature and acoustic frequency
– amorphous materials have loss peak at low temperatures

D. Crooks, Class. Quantum Grav. 23 (2006) 4953–4965

I W Martin et al, Class. Quant. Grav. 27 225020, 
(2010)

aLIGO Ti:Ta2O5 SiO2 R.T. dip

large variety of glasses
have similar cryo behavior



Doping and Annealing Alter Dissipation

• Loss modified by dopants
– TiO2 doping  

reduces losses in Ta2O5

• Annealing modifies loss spectra

P. Murray et al, U. Glasgow
LIGO-G1500874

Ta2O5 annealing modifies behavior
can improve loss at some temperatures

while worsening it at others

annealing temperature limited by crystallization
suppressing crystallization important

annealing
temp.

[I W Martin et al, Class. Quant. Grav. 27 225020, 2010]

increasing Ti

Ti:Ta2O5



Low-frequency losses in amorphous dielectrics

• Conventionally associated with low energy excitations (LEEs)
– conceptualized as two-level systems (TLS)

E1

E2V

Δ

Oversimple picture: bond flopping
crystal quartz

fused silica

Distribution of TLS in silica 
due to disordered structure

figures from B.S. Lunin monograph



Theoretical Guidance: Molecular Dynamics

• Molecular dynamics calculations for amorphous materials
– provide insight into dissipation mechanisms
– can suggest promising material combinations

• Some observations: simple bond-flopping inadequate picture fails
– TLS involves dozens of atoms in nm-scale configurations

J. Trinastic, R. Hamdan, C. Billman, H. Cheng, Phys. Rev. B93 , 014105 (2016)

J. Jiang LIGO G1800533

“medium-range” order important

cause cryogenic losses cause 300 K losses



Theoretical Guidance: Molecular Dynamics

• Some observations:
– some theoretical trends tie up with experiment

decrease in loss with titania dopoing in tantala
•

Ti:Ta2O5

JP Trinastic, PRB 93, 014105 (2016)
P. Murray et al, U. Glasgow LIGO-G1500874

• Correct trends already suggest potentially interesting materials
– e.g. ZrO2:Ta2O5 (more later)

• Agreement best at cryogenic temperatures
larger models being implemented to address 300 K range

increasing [Ti]
increasing [Ti]



Ultrastable Glass: Toy Model

S. Singh, Nature Mater. 12, 139 (2013)reach more stable glass from vapor than liquid

supercooled
liquid

Tglass

glassy 
regime

liquid vs vapor deposition)

Ts~0.8 Tglass

liquid



deposition temperatures, Ts

annealed 350°C

Ultra-stable Glasses: amorphous silicon (a-Si)

• a-Si experiment: steep improvement for deposition at Ts ~  400 C: ϕ ~ 10-6 (!)
– much lower loss than deposit at 300 C and anneal at 400 C

critical Ts /Tglass ~ 0.75 vs predicted Ts ~ 0.8 Tglass

• First example of inorganic ultra-stable glass
– potential for Voyager mirror coating

X. Liu, F. Hellman, et al, PRL 113, 025503 (2014)

Formation of ultrastable glass favored by:

Deposition at Ts ~ 0.8 Tglass

Low deposition rates 

Ion-beam assisted deposition (?)

Applicable to amorphous oxides?



Amorphous silicon growth simulations

Test case for more complex materials (oxides)
MD with classical potentials

close to experimental (~750 K)

preliminary

Suggest suitable dopants       

Guidance on optimum substrate temperature



Ultra-stable Oxide Glasses?

• Ta2O5 high Ts deposition
– lower loss than R.T. dep
– but similar after annealing

M. Abernathy NRL LIGO G1800418

RT

Ts = 300 C

Ts = 500 C

Tanneal = 600 C

• Al2O3

– cryogenic: better than SiO2

– preliminary: more characterization
necessary

– first ultrastable amorphous oxide?

300 K

G Vajente, (2018) Class. Quantum Grav. 35 075001



Suppressed Crystallization

• Annealing reduces R.T. loss ~monotonically with Tanneal

• Annealing temperature limited by onset of crystallization

• Suppression of crystallization valuable path to low loss
– chemical frustration

suitable dopants: two cations (Ti:Ta2O5), three cations …
– geometrical frustration

nanolayers thinner than critical crystal nucleus

Tantala annealing

crystallization



SiO2:HfO2

• 27%SiO2:HfO2

– HfO2 crystallizes as deposited

– SiO2 suppresses up to 600C anneal

– no low-T loss peak (vs SiO2)

– 2 x less loss than SiO2 at 20 K

• Revisit for 10 K low-index layer
K. Craig et al, GEO, LIGO-P1800241

I. Martin LIGO-G1801548



Annealing Mixed Oxides: Zr:Ta2O5

• Anticipate chemical frustration of crystallization in mixed oxides
• ~15%Zr:Ta2O5 shows promising results

– low rate deposition (S. Reid with ECR)
– no crystallization up to 750 C (compare ~600 C Ta2O5)

– IBS ~48%Zr:Ta2O5 up to 800 C (not as good as low-rate 15%Zr:Ta2O5)

preliminary
reproducible?

approaching A+ spec
Steinlechner LIGO-G1800585b



Structure Determination from X-Ray Scattering

Zr:Ta2O5 X-ray data

typical Zr:Ta2O5 resultReverse Monte-Carlo fitting to X-ray data
constrained with experimental 
(RBS) density and composition 

RMC

 



Structural Characterization (Zr:Ta2O5) 

• Recovered models fit well to data
– in both short and medium range order

• Clear narrowing of bond-angle distribution with annealing
– possible connection to high vs low temperature behavior

• Currently computing predicted mechanical loss
– and responsible motifs 



Low-temperature ϕ suppressed 

Nanolayers

• Investigate silica with nanolayers of titania
– NTHU LIGO-G1800300
– different thicknesses, same ratio 

• Cryogenic loss peak suppressed

• Also see crystallization suppression in TiO2



Amorphous Oxides Take-Aways

• Theory  atomic structure  synthesis beginning to interact 
usefully
– should speed navigation of experimental parameter space

• Promising results on
– ideal glass
– crystallization suppression

• (preliminary) evidence of suitable materials for A+
– not yet fully reproducible

• Non-trivial development time after down-select material 
– depends on how far deposition method is from conventional IBS



Amorphous Semiconductors for Cryogenic Mirrors 

• Mechanical properties adequate

– problems from optical absorption

– worse at 1 μm  1.5 μm  2 μm

• a-Si

– low-rate ECR deposition

– 100-fold optical absorption reduction vs conventional IBS

– add hydrogen annealing? 

• a-Si/SiO2 HR: ~10 ppm abs.

– apply in MMC
1.5 μm IBS

ECR

Birney, LIGO-G1801091-v1



Silicon Nitride

• LPCVD deposition of SiN0.40H0.79

– R.T.: ϕ ~1 x 10-4

– no low temperature loss peak

• 1/4-wave SiN0.40H0.79/SiO2 bilayers
– within ~2 of ET-LF and Voyager 

CTN specs

• Optical absorption of SiN/SiO2 HR: 
~50 ppm
– requires multi-material coating

with Ta2O5/SiO2

– can bring absorption to ~2 ppm

• Annealing behavior studies underway

Pan et al NYHU, P1800164-v3

SiO2

SiNH

SiNH/SiO2 bilayers

λ/4 stack (theo)



Mix and Match for Cryogenics

• Adequate elastic losses available for cryo operation

– issue in all cases is associated optical absorption

• Multi-material coatings (MMC) a possible solution 

Low optical loss
High elastic loss

High optical loss
Low elastic loss

Can trade one misbehavior for the othera-Si
SiNH
SiO2:HfO2
High-T Al2O3?

Ti:Ta2O5
SiO2
improved oxides

J. Steinlechner, et al , Phys. Rev. D 91 042001 (2015)
W. Yam et al, Phys. Rev. D 91, 042002 (2015)

I.Martin LIGO-G1801548



10 K Example

K. Craig, P1800241-v2

Conventional
a-Si

a-Si MMC



Crystalline Coatings

• Absorption and mechanical loss OK for all applications
– scatter statistics need further characterization
– uniformity over larger areas

• Scaling to suitable dimensions
– G. Cole: ~$40M (GaAs substrate + MBE + bonding tool)

• Note also environmental and thermodynamic tolerances
– via electro-optic and piezoelectric effects

1 V/cm → ~50 nrad Δ reflection phase
– needs further study



Some Key Decision Aspects

• Timelines to select material system
– A+LIGO: 2 years 
– cryogenic (Voyager, ET LF): > 5 years

• Research approaches
– 300 K, 1 µm: amorphous oxides

optical ok, elastic needs work
– cryogenic, 1.5 – 2 μm, amorphous (crystal?) semiconductors, MMC

elastic ok, optical needs work
• Tooling

– only LMA IBS system currently can meet optical specs
compatible with low rates, semiconductor materials?

– other deposition methods require tool development ($$, time)
ECR sputter: low rate oxide and a-semiconductor
LPCVD: amorphous semiconductors
crystal growth + MBE + bonding: AlGaAs crystal mirrors

– how/when to begin to develop alternative tools?



Path(s) Forward for Cryogenic 3G Coatings

• Amorphous semiconductors
– continue to explore parameter space to reduce absorption

rate, temperature, annealing temperature and atmosphere

• Multi-material mirrors
– test optical properties and thermal noise on complete HRs
– explore alternative low-index oxide layers

nanolayers to suppress crystallization/loss?

• Alternative deposition methods to IBS
– low-rate ECR, LPCVD

better material properties obtained than IBS
– realistic for scaled-up mirrors?

fab small HRs, evaluate scatter etc
evaluate tooling cost (and time) to adapt to 3G-scale mirrors

As simple as it can be, but no simpler



Path(s) Forward for Cryogenic 3G Coatings

• Crystalline mirrors

– best absorption and thermal noise combination

– more complete scatter statistics useful

– electro-optic and piezoelectric properties

evaluate thermodynamic and environmental implications

– scaling expensive 
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