G1801672

* Trade off science gained at low
frequencies vs. observatory

requirements

\ " o= i
J i \r N
S ——

'

’

Stefan Hild (Glasgow) and Stefan Ballmer (Syraguse)
With lots of input from many others ... ™ -

-

\ »
-
. v '
. . .
. »
»

.



Disclaimer

e Obviously, very hard to trade-off science vs effort/money. Actually, one might
even argue that right now IT IS IMPOSSIBLE. :(

e So far we had too few signals to really confidently extrapolate to 2030. Our
current thinking might be biased/coloured by what we have discovered so far.

e In the following, as an exemplary exercise, we will try to look (more qualitative
than qunatitative) at the benefits and challenges of extending the sensitivity
into the sub-10Hz region.

e As you will see we there are more questions than answers.

e Hopefully, there will still some fruit for thought to take away.
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Motivation
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e When going from 2G to 3G we need to improve by about a factor 10 above 10Hz,
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Motivation
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e When going from 2G to 3G we need to improve by about a factor 10 above 10Hz, but by a factor

100-10000 for frequencies below 10Hz.
e 3G low frequency sensitivity requires disruptive technology/concepts.
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Motivation
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e When going from 2G to 3G we need to improve by about a factor 10 above 10Hz, but by a factor

100-10000 for frequencies below 10Hz.
e 3G low frequency sensitivity requires disruptive technology/concepts.
e Need to reduce several noise sources very significantly.
e Key-question: What do you gain from that in terms of Science and how to find the optimum

effort to science ratio.
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Parameter Estimation of GW170817 (aLIGO)
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Parameter Estimation of BNS (aLIGO design)
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|. Harry & T. Hinderer arXiv:1801.09972
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Parameter Estimation of BNS (ET design)
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For the ET example we find that the different parameters split up in the low
frequency range.
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In-band time for CBC sources => Early warning time
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e The lower the frequency cut-off, the more pre-merger warning time we obtain.
Note: Approach above over-simplified, i.e. need to subtract time it takes to make
detection (i.e. accumulate SNR =8). Also ideally would need sky-localisation.
e Also note that computing requirements increase with length of waveforms.
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Gaining sensitivity for heavy binaries, i.e. IMBH
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e The lower the frequency cut-off the more massive binaries can be observed.
e Also the lower the frequency cut-off the further out one can see systems
because distant systems are significantly red-shifted.
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Gaining sensitivity for heavy binaries, i.e. IMBH
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e The lower the frequency cut-off the more massive binaries can be observed.

e Also the lower the frequency cut-off the further out one can see systems
because distant systems are significantly red-shifted.

e Can we probe seeds for SMBH?
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Low frequency pulsars
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e Lower frequency cut-off simply means more sources.
e Question: How interesting are the sub 10Hz pulsars?
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Stochastic Backgrounds
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Low frequency essential for stochastic backgrounds.

Scale-invariant spectrum falls faster with frequency than coating thermal noise.
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Seismic Newtonian Noise

< Seismic causes density changes in the
ground and shaking of the mirror
environment (walls, buildings, vacuum
system).

< These fluctuations cause a change in the
gravitational force acting on the mirror.

< Cannot shield the mirror from gravity. ®
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Going Underground

Horizontal spectral motion at various sites
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Homestake Results

Vuk Mandic 4890 ft (1600 m)

UNIvERSITY OF MINNESOTA.
- ]

1Ohggwtonlan noise estimate: Budget. Time=1117324816, Depth=4850 ft, Reg=2 Selsmlc array:

—-— - T g ™ T

Seismic
spectrum
decomposed
into mode
types (with
different depth
dependence)

h (strainf/sqrt(Hz))

10°
Frequency (Hz) A. Matas
Assuming CE design

PoeQem 4 e
-
|4
s~
' |
‘
b
5



Atmospheric NN

----- On Earth surface without inside building contribution
i  EETE) p— On Earth surface with inside building contribution
oy, \ 100m underground with inside cavity contribution
"x.. \ |=—100m underground without inside cavity contribution
1072 “e.. |= =Sensitivity ET e CE

-l
o
&

Strain [1/v Hz]

S
Donatella et al, arXiv:1801.04564v1

-l

o
n
w

-y
o

-t

o

Frequency [Hz]

FIG. 11. Infrasound NN for an ET like laser interferometer.
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Double the hardware: Xylophone for ET

As our detectors become more and more complex and at the same time aim increase even

further the observation bandwidth the xylophone concept becomes more and more attractive.

The xylophone concept was originally suggested for advanced LIGO:

R.DeSalvo, CQG 21 (2004) S1145-S1154
G.Conforto and R.DeSalvo, Nuc. Instruments 518 (2004) 228 - 232
D.Shoemaker, presentation at Aspen meeting (2001), http/iwww.ligo.caltech.edu/docs/G/G010026-00.pdf

Allows to overcome ‘contradicting’ requirements in the technical detector design:
» To reduce shot noise you have to increase the light power, which in turn will

reduce the sensitivity at low frequencies due to higher radiation pressure noise.

» Need cryogenic mirrors for low frequency sensitivity. However, due to residual
absorption it is hard to combine cryogenic mirrors with high power
interferometers.

For ET we choose the conservative approach (designing an infrastructure) and went for a 2-
band xylophone: low-power, cryogenic low-frequency detector and a high-power, room-
temperature high-frequency detector.
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Double the hardware: Xylophone for ET
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Cryogenics

e Motivation: Reduction of thermal
noise (improve low frequency)
and for 120K also enable high
power operation (improve high
frequency).

Intermediate thermal shield

Lower thermal shield

e Obviously, going cryogenic is a
large effort, especially when
going to the 10-20K range (new
materials, new wavelength, new
designs, additional machinery).

Image courtesy R.Adhikari

e Seismic noise / newtonian noise
due to cryogenic machinery?

e Additional noises like scattering
due to heat shields etc ...

S.Hild & S.Ballmer DAWN IV, Amsterdam, August 2018 Slide 22



Control noises
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OF SCATTERED LIGHT BAFFLES LIGO D1700361-v3

Scattered light =5 e

e Light ‘taking the wrong path’. Creates loss, but more importantly for low
frequency sensitivity: creates noise.

e Large engineering effort to mitigate.

e So far only observed as phase noise. In future also causing radiation pressure
noise?
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How can one approach a trade-off?

N

A For a single source or figure of merit it
. should not be too difficult to come up
. ‘with a number in units [science/$$$] =

ﬁ \ ', & e How to combine such numbers for
: wn . ‘ .
, various soyrces or science targets™
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Gaining sensitivity for heavy binaries, i.e. IMBH
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e The lower the frequency cut-off the more massive binaries can be observed.

e Also the lower the frequency cut-off the further out one can see systems
because distant systems are significantly red-shifted.

e (Can access seeds for SMBH?
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Gaining sensitivity for heavy binaries, i.e. IMBH
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e The lower the frequency cut-off the more massive binaries can be observed.

e Also the lower the frequency cut-off the further out one can see systems
because distant systems are significantly red-shifted.

e Can access seeds for SMBH?
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Stochastic Backgrounds
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Gaining sensitivity for heavy binaries, a caveat...

Lessons for 2G:

For heavy/short
signals the glitch
foreground is more
severe

True reason for our
current cut-off at
higher masses
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