Designing a Next-Generation

Gravitational-Wave Detector Network




What should a network of 3G detectors look
like?

Where should we place them?

How many of them should there be?
How long should they be?

Etc.
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How to answer

Write down network and detector parameters:

Number, location, and orientation of detectors
Length of detectors
Optical design of detectors
Etc.

Write down science goals:
Neutron-star physics
Stellar history and black hole formation via CBCs
Tests of relativity
Standard siren and multi-messenger astronomy
Etc.

Perform some optimization routine.
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Metrics

Optimizing network parameters directly from science
goals is hard and ill-defined!

We should try to identify metrics that link the two:

network ———— > metrics ——— > science

optimize identify
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Some previous work
Raffai et al. [1] and Hu et al. [2]:

Numerically optimize detector placement for 2G (aLIGO)
and 3G (ET) networks

Figures of merit: polarization sensitivity, sky
localization, and chirp mass reconstruction

Vitale et al. [3, 4]:

Evaluate CBC parameter estimation capabilities for
networks with 3G detectors

Mills et al. [5] and Zhao et al. [6]:
Localization capabilities for networks with 3G detectors
Michimura et al. [7]:

Optimize Kagra configuration to improve range or sky
localization
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What metrics to evaluate

Strawman list of metrics:

CBC mass uncertainty

CBC distance and inclination uncertainty
CBC localization

CBC signal-to-noise ratios

Integrated strain sensitivity above S00 Hz

Polarization sensitivity

(Where applicable, each metric evaluate at redshift
z€{0.1,0.3,1,3,10,30} and total mass
M € {3,10, 30,100, 300})
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What about the "rare” coalescences?
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Localization versus area
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Localization: median versus best
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Signal-to- -noise ratlo
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Luminosity distance

Best 1% fractional dist. uncertainty
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High-frequency SNR for unmodeled sources
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Metricating the unknown?

Known Known

knowns unknowns
Unknown Unknown

knowns unknowns
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Preliminary conclusions

It mostly doesn't matter what percentile events you
optimize for

A 2G facility isn't a replacement for a 3G facility no matter
how clever you are with your network
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