Designing a Next-Generation Gravitational-Wave Detector Network

Evan Hall LIGO MIT

31 August 2018

What should a network of 3G detectors look like?

Where should we place them? How many of them should there be? How long should they be? Etc.

How to answer

Write down network and detector parameters:

Number, location, and orientation of detectors Length of detectors Optical design of detectors Etc.

Write down science goals:

Neutron-star physics Stellar history and black hole formation via CBCs Tests of relativity Standard siren and multi-messenger astronomy Etc.

Perform some optimization routine.

Metrics

Optimizing network parameters directly from science goals is hard and ill-defined!

We should try to identify metrics that link the two:

Some previous work

Raffai et al. [1] and Hu et al. [2]:

Numerically optimize detector placement for 2G (aLIGO) and 3G (ET) networks Figures of merit: polarization sensitivity, sky localization, and chirp mass reconstruction

Vitale et al. [3, 4]:

Evaluate CBC parameter estimation capabilities for networks with 3G detectors

Mills et al. [5] and Zhao et al. [6]:

Localization capabilities for networks with 3G detectors Michimura et al. [7]:

Optimize Kagra configuration to improve range or sky localization

What metrics to evaluate

Strawman list of metrics:

CBC mass uncertainty CBC distance and inclination uncertainty CBC localization CBC signal-to-noise ratios Integrated strain sensitivity above 500 Hz Polarization sensitivity

(Where applicable, each metric evaluate at redshift $z \in \{0.1, 0.3, 1, 3, 10, 30\}$ and total mass $M \in \{3, 10, 30, 100, 300\}$)

What about the "rare" coalescences?

Localization versus area

Localization: median versus best

9/13

Luminosity distance

High-frequency SNR for unmodeled sources

^{11/13}

Metricating the unknown?

Preliminary conclusions

It mostly doesn't matter what percentile events you optimize for

A 2G facility isn't a replacement for a 3G facility no matter how clever you are with your network

References

- P. Raffai et al., "Optimal networks of future gravitational-wave telescopes", Classical and Quantum Gravity 30, 155004 (2013).
- Y.-M. Hu et al., "Global optimization for future gravitational wave detector sites", Classical and Quantum Gravity 32, 105010 (2015).
- [3] S. Vitale et al., "Parameter estimation for binary black holes with networks of third-generation gravitational-wave detectors", Physical Review D **95**, 064052 (2017).
- [4] S. Vitale et al., "Characterization of binary black holes by heterogeneous gravitational-wave networks", arXiv preprint arXiv:1804.07866 (2018).

References (2)

- [5] J. Mills et al., "Localization of binary mergers with gravitational-wave detectors of second and third generation", arXiv preprint arXiv:1708.00806 (2017).
- [6] W. Zhao et al., "Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology", Phys. Rev. D 97, 064031 (2018).
- Y. Michimura et al., "Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector", Phys. Rev. D 97, 122003 (2018).