

Gravitational-wave Detectors: The US Landscape 2020–2030 and Beyond (A Personal Perspective)

Dave Reitze LIGO Laboratory

LIGO-G1801597-v1

LIGO Laboratory

1

LIGO Laboratory Operations Plan for 2019-2023

- Plan lays out envisioned run schedules and upgrade/commissioning periods for coming 5 years
- Caveats which could impact this plan: i) A+ Project detailed planning not done, ii) joint run planning with Virgo and KAGRA

A+ Advanced LIGO Upgrade 2019-2026(+)

- Mid-scale upgrade of the Advanced LIGO interferometers
 - >>> Improves binary neutron star inspiral range by ~ 1.9; 30/30 M_☉ binary black hole inspiral range by ~1.6
 - » Frequency dependent squeezing + better coatings w/ lower thermal noise
- US-UK-Australia international collaboration
- Project Status:

LIGO

- » US: \$20.5M awarded by NSF to begin Oct 1, 2018
- » UK: ~ \pounds 10M requested by STFC; under review
- » Australia: funded by ARC, have received deliverables
- Construction Project Schedule: 2019-2023
 - » Fabrication/facility modifications/installation/ integration: 2019-2022
 - » Commissioning: 2023
- Operation: currently envision a 1.5-2 year run durations in 2024-2026, perhaps 2027

LIGO-G1801597-v1

LIGO Laboratory

LIGO

Longer Term I: Voyager

- A 4 km design to exploit the LIGO Observatory facilities limits
 - » Ultimately determined by arm length and vacuum base pressure
- Uses new technologies …
 - » Silicon test masses
 - » 123 K operating temperature
 - » 2 μm 150 W laser, higher quantum efficiency photodiodes
- ... but reuses key Advanced LIGO components
 - » Vacuum system
 - » Seismic isolation
- Prototyping effort
 - 40 m interferometer at Caltech; pending funding
- Cost: O(\$10⁸M)
- Time Scale: ? (but not before late 2020s)

Shapiro, Brett, et al. "Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories." Cryogenics 81 (2017): 83-92.

LIGO-G1801597-v1

LIGO Laboratory

Longer Term II: Cosmic Explorer

- 40 km L-shaped interferometer design
- A key node of the 3rd generation detector network
- Sensitivity can benefit from new technologies (a la Voyager), but could also use existing 2G technology, appropriately scaled up:
 - » Large aperture, 320 kg silica test masses, higher arm powers
- Design effort formally underway
 - » Recently funded by NSF, 3 year study
 - » Matt Evans (MIT) leading, participation by other US institutions
- Cost: O(\$10⁹)
- Time scale for realization: ?, but not before 2030

B. P. Abbott, et al., (LIGO Scientific Collaboration), "Exploring the sensitivity of next generation gravitational wave detectors", Class. Quantum Grav. 34, 044001 (2017).

LIGO-G1801597-v1

LIGO Laboratory

The Path to 3G in the US

- Possible paths
- 1. Field-Specific National Academies Studies
 - » Commissioned by funding agencies
 - » Studies are both comprehensive and intensive
 - 10-15 study members, membership is a mix of scientists from within the community and objective outsiders
 - Resulting report and recommendations undergo stringent review

OR

LIGO

2. Astro2020 Decadal Survey

- » Astronomy and various fields of Physics conduct Decadal Surveys
 - Initial LIGO was endorsed in a 1986 study
- » Chartered by US agencies (NASA, NSF, DOE)
- » (Complex) Process involves surveying relevant communities and issue report ranking large and mid-scale projects
- » Unclear if ground-based GW will be included for ranking
- Astro2020 call for science papers:
 - » <u>http://sites.nationalacademies.org/cs/groups/ssbsite/documents/webpage/</u> <u>ssb_187932.pdf</u>
 - » Due by Jan 18, 2019

More on Astro2020 this afternoon

LIGO-G1801597-v1

LIGO Laboratory

6