Noise Project

Constructing a Balanced Homodyne Detector For Low Quantum Noise Gravitational Wave Interferometry

John Martyn, LIGO SURF 2018 Mentors: Andrew Wade, Kevin Kuns, Aaron Markowitz, Rana Adhikari

Caltech, LIGO

August 23, 2018

John Martyn Constructing a Balanced Homodyne Detector

Sources of Noise

Some sources of noise at LIGO:

- Seismic noise
- Thermal noise
- Electronic, laser, and other technical noise
- Quantum noise

Noise Project Formal Discussion and LIGO Noise Quantum Noise

A Brief Discussion of Noise

• Given a signal, y(t), as a function of time, the noise spectral density of the signal, $N_y(f)$, is defined by

$$N_y(f) := \lim_{T \to \infty} \frac{2}{T} \left| \int_{-T/2}^{T/2} dt \ (y(t) - \bar{y}) e^{2\pi i f t} \right|^2$$

• This obeys $\int_0^\infty df \ N_y(f) = \sigma_y^2,$ and allows one to examine what frequencies contribute to a signal's variance.

John Martyn

Constructing a Balanced Homodyne Detector

Quantization and Noise

A source of noise, known as quantum noise, contributes to intrinsic noise that LIGO must combat.

Noise

- Due to quantum mechanics
- Recall the quantization of a mechanical system:

$$[\hat{x}, \hat{p}] = i\hbar \Rightarrow \sigma_x \sigma_p \ge \hbar/2 \tag{1}$$

- Nonzero uncertainties introduce noise into x and p
 - For instance, $\sqrt{\int_0^\infty df \ N_x(f)} = \sigma_x \neq 0 \Rightarrow N_x(f) \not\equiv 0$

How does this affect LIGO? \Rightarrow the light in the interferometer First consider a monochromatic plane wave:

• Its electric field:

$$\hat{\mathbf{E}}(\mathbf{r},t) = E_0 \Big(\hat{X}_1 \cos(\omega t) - \hat{X}_2 \sin(\omega t) \Big) \mathbf{p}(\mathbf{r},t)$$

 $E_0 =$ amplitude, $\mathbf{p}(\mathbf{r}, t) =$ polarization

- \hat{X}_1 and \hat{X}_1 , the amplitude and phase quadratures, furnish a description of the wave.
- We wish to measure these quadratures to perform interferometry.

• Unfortunately, quantum noise introduces shot noise and radiation pressure noise into monochromatic plane waves (by quantizing EM field).

Noise

- Quadratures become $X_{1,2} = \text{classical field} + \text{noise} = X_{1,2}^0 + x_{1,2}$
- This poses a serious difficulty for gravitational wave interferometers using monochromatic plane waves.

Balanced Homodyne Detection

• Luckily, balanced homodyne detection (BHD) can accurately measure an arbitrary quadrature of light.

Noise

- BHD works by mixing a strong source of light known as the local oscillator (LO), with a weak signal (modulated light), and sending the combined light through a beam splitter.
- The signals exiting the beamsplitter are then subtracted, producing the homodyne signal.

Balanced Homodyne Detection

• $S_{c,s}(t)$ and $L_{c,s}(t)$ (quadratures) contain effects due to quantum noise:

Noise

$$S_{c,s}(t) = S_{c,s}^0(t) + s_{c,s}(t), \qquad L_{c,s}(t) = L_{c,s}^0(t) + l_{c,s}(t)$$

• We assume the local oscillator (LO) is more intense than the other fields:

Balanced Homodyne Detection

• Local oscillator (LO) is more intense than the other fields:

Noise

$$L_{c,s}^{0}(t) \gg S_{c,s}^{0}(t), \ s_{c,s}(t), \ l_{c,s}(t)$$

• Homodyne current: (Danilishin, Khalili, arXiv:1203.1706)

$$i_{\text{hom}} = i_1 - i_2 \propto L_c^0(S_c + s_c) + L_s^0(S_s + s_s)$$

• LO noise cancels out! i_{hom} depends only on signal noise.

John Martvn

- Can measure arbitrary quadratures ⇒ more information than LIGO's DC readout scheme
- Useful for experiments with squeezed light

Constructing a Balanced Homodyne Detector

• The goal of this project is to construct the optical components and readout electronics for a balanced homodyne detector that may be used in various LIGO research labs performing experiments with non-classical light.

- \bullet Laser emits 1064 nm TEM_{00} Gaussian mode
- Wave plates and Faraday rotator for power control.
- Steering mirrors for proper alignment

Goal Steps

Photodiodes

- Our BHD readout uses Laser Components InGaAs PIN photodiodes.
 - Model Number: IG17X3000G1i
 - 3 mm diameter
 - 1.55 nF capacitance
- We must characterize these to ensure they will perform well in the detector.

Noise Project

Goal Steps

Photodiodes

- Measured optical transfer function of combined photodiode and transimpedance amplifier circuit at two different laser powers.
- Large gain, independent of power, displays roll off with corner frequency $f_c \approx 300$ kHz.

• Created two circuits (one for each photodiode), which feature buffers, AC and DC output, and differential output:

John Martyn

Constructing a Balanced Homodyne Detector

- Powered by 9V batteries
- Inputs from photodiode come from LEMO connectors that I attached to the photodiode
- Outputs are sent to BNC and LEMO connectors

John Martyn Constructing a Balanced Homodyne Detector

ADC and Digital Subtraction

- Attached circuit inputs to photodiodes and performed subtraction via SR785 performed well
- Signals were discernible and noise reduced to noise floor
- Digital subtraction is more robust ⇒ connected DC outputs to an analog-to-digital converter

John Martyn

Constructing a Balanced Homodyne Detector

- As a test, I sent in AC (amplitude modulated) and DC signals from the laser and collected data from the ADC with a python script
- Homodyne readout was achieved by subtracting the data from the two photodiodes in appropriate quantities via a Jupyter notebook:
 - homodyne signal = $H = \alpha (D_1 \beta D_2)$
 - $\alpha = ADC$ counts to volts, $\beta = relative gain,$
 - $D_{1,2}$ = photodiode data from ADC (measured in counts)

- ADC noise is high, making it hard to discern a signal
- Likely a transmission of configuration issue

John Martyn

- Make changes to circuit to reduce noise (voltage regulators, shunt capacitors, new op amps)
- Some noise measurement agreement is fair, others is not
- Possible short circuit when changes were made?

Future Work

- Optimize noise
 - Use new op amps (OP37's in the mail!)
 - Reduce ADC noise (improve signal transmission to ADC (15m away), check configuration, use differential output)
- Use BHD setup in an interferometer or experiment

Thanks to:

- Andrew, Kevin, Aaron, Rana
- Johannes, Tom, Anchal, Gautam, Vinny, Koji, Aidan
- Caltech LIGO collaboration
- LIGO SURF

References

[1] A. I. Lvovsky, *Squeezed Light*. ArXiv e-prints (2016), arXiv:1401.4118v2 [quant-ph].

[2] A. Zangwill, Modern Electrodynamics. (2013)

[3] B. P. Abbott et al., Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. **116**, 061102 (2016).

[4] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. (1973).

[5] H. Grote, et. al., *High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors*. Opt. Express, **24**, 20107-20118 (2016).

[6] H. Kogelnik and T. Li, Laser Beams and Resonators. Appl. Opt. 5, 1550-1567 (1966)

[7] H. Miao, Exploring Macroscopic Quantum Mechanics in Optomechanical Devices. (2012).

[8] H. W. Ott, Noise Reduction Techniques in Electronic Systems. (1988).

[9] J. G. Graeme, Photodiode Amplifiers: Op Amp Solutions. (1995).

[10] K. Thorne, *Ph237b: Gravitational Waves*. California Institute of Technology (2002).

[11] K. Thorne and R. Blanford Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics. (2017).

[12] https://www.ligo.caltech.edu/

[13] M. Bassan, et. al, Advanced Interferometers and the Search for Gravitational Waves. (2014).

[14] K. Nakamura and M. Fujimoto *Double balanced homodyne detection*. ArXiv e-prints (2018), arXiv:1711.03713v2 [quant-ph].

[15] S. L. Danilishin and F. Y. Khalili, *Quantum Measurement Theory in Gravitational-Wave Detectors*. ArXiv e-prints (2012), arXiv:1203.1706v2 [quant-ph].

[16] S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity. (2004).

[17] W. Ketterle, 8.422 Atomic and Optical Physics II. Spring 2013. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.

[18] G. Heinzel, NAO Mitaka, LISO - Program for Linear Simulation and Optimization of analog electronic circuits - Version 1.7. (1999), http://www2.mpq.mpg.de/~ros/geo600_docu/soft/liso/manual.pdf.

[19] H. Hashemi, Transimpedance Amplifiers (TIA): Choosing the Best Amplifier for the Job. (2012),

http://www.tij.co.jp/jp/lit/an/snoa942a/snoa942a.pdf.

[20] A. Bhat, Stabilize Your Transimpedance Amplifier. (2012), https://www.maximintegrated.com/en/app-notes/index.mvp/id/5129.