Melissa Kohl, Whitman College (mentor: Alex Urban)

Sub-Classification of Blip Glitches

Using Q-Transforms and Convolutional Neural Networks with GravitySpy

LIGO and Blip Glitches

- * Glitches: transient noise in the calibrated strain data, often picked up by auxiliary channels
- * All glitches can obscu signals, but blip glitch binary black hole mer match template signals
- * The source of blip glitches is unknown
- * Solution: sub-classification!

GravitySpy

* LIGO collaborators use multi-layer image classification techniques and GravitySpy, a machine learning software package, to classify glitches and find their sources

* GravitySpy is good at classification of blips but not at finding a source

Summer Project Goals

 Create spectrogram images different than those produced by Omega Scans and GravitySpy to find possible subclasses

 Build Convolutional Neural Networks that can distinguish between subclasses

Creating Q-Transform Images

- * Q-Transform: time-tofrequency transform more suited to short duration signals than the Fourier Transform
- I started by creating simple Q-Transform spectrograms, cropped to smaller time and frequency domains than GravitySpy and Omega Scans
- * All parameters set to default other than the amount of raw strain data (20 surrounding seconds)

Discovery of Six Distinct Blip Shapes

Comparison with GravitySpy Spectrograms

Unsupervised Learning: Variational Auto-Encoder (VAE)

- * How does a Variational Auto-Encoder work?
 - Put images through a convolutional encoder that outputs meaningful statistical values
 - Create a decoded image based on the statistical values
 - * Train based on the similarity of the decoded image to the original
 - Put test images through the trained encoder
 - * Create a scatter plot using the statistical values from the output of the encoder
- Images that are very similar to each other should cluster together

Variational Auto-Encoder Results

Although training doesn't include labels, we can still label the test data however we want

- * Hanford and Livingston appear to have some overlap, but this scatter further shows that the blips are different at each detector.
- * Side cluster turns out to be images without clear signals

Sub-Class Labeled Blips

Future Work

- * Re-examine sub-classes based on VAE scatter plots and saved neural network info
- Remake images
 - Larger frequency range
 - * Resolve images with no signal
 - Change parameters on double-blips
- * Implement multi-layer input and RGB images with the Variational Auto-Encoder

Acknowledgements

- * Special thanks to Alex Urban, my mentor, and Scott Coughlin
- Caltech LIGO
- * LIGO SURF

Spreading Effect

- * The spreading in some non-signal images appears to be an effect of the Q-Transform, possibly indicating a problem with whitening or the specified Q-range
- Quick solution is to use 20 seconds of surrounding data instead of 30 seconds—resolves most spreads
- * See my final paper for specifics on spreading

Trends in Blip Attributes

- * Each glitch has saved data, including peak frequency, Signal to Noise Ratio (SNR), duration, central frequency, and bandwidth
- * Do high-density bins in the histograms correspond to different shapes in the Q-Transform images?

Supervised Learning: Convolutional NNs

- * Main idea for supervised learning:
 - * Label images based on auxiliary information and look for test accuracy close to 50% or 100%
- Input:
 - * 120 x 200 x 3 (RGB images)
 - Auxiliary input array for twoinput networks
- * Output:
 - Either binary or multi-class

Supervised Learning Results

- * Are the 200 Hz peak frequency blips different at Hanford versus Livingston?
 - * Test Accuracy: 0.1585
 - * Problems: Amount disparity (2405 to 270) between classes leads to skewed and inaccurate training.
- * Do the central frequency high-density bins within Hanford's 200 Hz peak frequency spike have different shapes?
 - * Test Accuracy: 0.7317
 - * Problems: Size of training data is only 369, so results are speculative at best.
- * Can a network be trained based on a set of self-labeled images?
 - Test Accuracy: 0.3923 (at best)
 - Problems: Images don't magically fit into boxes, and if two labels have very similar images, multi-classification is inconsistent

Detailed VAE Layers

2D Histograms

