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LIGO and Blip Glitches
❖ Glitches: transient noise in the 

calibrated strain data, often 
picked up by auxiliary 
channels

❖ All glitches can obscure GW 
signals, but blip glitches mimic 
binary black hole mergers and 
match template signals

❖ The source of blip glitches is 
unknown

❖ Solution: sub-classification!
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quickly explain images!!!



GravitySpy
❖ LIGO collaborators use multi-layer image classification 

techniques and GravitySpy, a machine learning software 
package, to classify glitches and find their sources

❖ GravitySpy is good at classification of blips but not at 
finding a source
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hierarchical steps—GravitySpy has 
found all the blips, we are now looking 
for different subclasses of blips



Summer Project Goals

❖ Create spectrogram images different than those produced 
by Omega Scans and GravitySpy to find possible 
subclasses

❖ Build Convolutional Neural Networks that can 
distinguish between subclasses
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Creating Q-Transform Images
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❖ Q-Transform: time-to-
frequency transform more 
suited to short duration signals 
than the Fourier Transform

❖ I started by creating simple Q-
Transform spectrograms, 
cropped to smaller time and 
frequency domains than 
GravitySpy and Omega Scans

❖ All parameters set to default 
other than the amount of raw 
strain data (20 surrounding 
seconds)

Q-transform has different base 
function (sine gaussian) than Fourier 
transform


Q: data quality factor—related to time 
complexity of transform



Discovery of Six Distinct Blip Shapes

Snitch

Normal Hat

Double

Stick

Dot
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mention whitening artifacts in double 
blips, asymmetry in hat blip, and 



Comparison with GravitySpy Spectrograms
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Unsupervised Learning: Variational Auto-Encoder (VAE)

❖ How does a Variational Auto-Encoder work?

❖ Images that are very similar to each other should 
cluster together

❖ Put images through a convolutional encoder 
that outputs meaningful statistical values

❖ Create a decoded image based on the 
statistical values

❖ Train based on the similarity of the decoded 
image to the original

❖ Put test images through the trained encoder
❖ Create a scatter plot using the statistical values 

from the output of the encoder
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Variational Auto-Encoder Results
❖ Although training doesn’t include labels, we can still label the test data however we want

❖ Hanford and Livingston appear to have some overlap, but this scatter further shows 
that the blips are different at each detector. 

❖ Side cluster turns out to be images without clear signals
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Sub-Class Labeled Blips
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Future Work
❖ Re-examine sub-classes based on VAE 

scatter plots and saved neural 
network info

❖ Remake images 

❖ Larger frequency range

❖ Resolve images with no signal

❖ Change parameters on double-blips

❖ Implement multi-layer input and RGB 
images with the Variational Auto-
Encoder
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Spreading Effect
❖ The spreading in some non-signal images appears to be 

an effect of the Q-Transform, possibly indicating a 
problem with whitening or the specified Q-range

❖ Quick solution is to use 20 seconds of surrounding data 
instead of 30 seconds—resolves most spreads

❖ See my final paper for specifics on spreading
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Trends in Blip Attributes
❖ Each glitch has saved data, including peak frequency, Signal to 

Noise Ratio (SNR), duration, central frequency, and bandwidth

❖ Do high-density bins in the histograms correspond to different 
shapes in the Q-Transform images?

!14



Supervised Learning: Convolutional NNs
❖ Main idea for supervised learning:

❖ Label images based on auxiliary 
information and look for test 
accuracy close to 50% or 100%

❖ Input:

❖ 120 x 200 x 3 (RGB images) 

❖ Auxiliary input array for two-
input networks

❖ Output:

❖ Either binary or multi-class

❖ Convolutional layers are better for 
images because they take all 
surrounding neighbors into account, 
rather than treating an image as a 
single, 1D array
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Supervised Learning Results
❖ Are the 200 Hz peak frequency blips different at Hanford 

versus Livingston?

❖ Test Accuracy: 0.1585

❖ Problems: Amount disparity (2405 to 270) between 
classes leads to skewed and inaccurate training.

❖ Do the central frequency high-density bins within Hanford’s 
200 Hz peak frequency spike have different shapes?

❖ Test Accuracy: 0.7317

❖ Problems: Size of training data is only 369, so results are 
speculative at best.

❖ Can a network be trained based on a set of self-labeled 
images?

❖ Test Accuracy: 0.3923 (at best)

❖ Problems: Images don’t magically fit into boxes, and if 
two labels have very similar images, multi-classification 
is inconsistent
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Detailed VAE Layers
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2D Histograms
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