Differentiating the Signal from the Noise

Towards Optimal Choices of Transient Follow-up

BETHANY SUTER

MENTORS: ALEX URBAN, MICHAEL COUGHLIN

Background

- GW170817 first binary neutron star merger witnessed by LIGO
- GW170817 was optimal
 - Close
 - > Strong signal
 - > Unseen in VIRGO
 - > Small localization region
 - > EM counterpart

Credit: LSC/LIGO

Background

- Third run of LIGO beginning soon, new discoveries expected
- Unlikely for new discoveries to be optimal like GW170817
- Large localization regions
- Binary neutron star (BNS) mergers require EM follow-up

Background

- Large Field of View Telescopes
 - ZTF Zwicky Transient Factory
 - Other telescopes Panstar, ATLAS, DECam
- Can cover night sky several times in one night
- Perfect for EM follow-up of BNS mergers

Credit: ResearchGate/Joel Johansson

Problem

- Even with large field of view telescopes, since telescope time is limited, we still need efficient follow-up of kilonova candidates.
- We must create prioritized lists based on the many identified candidates.

Goal

Minimize
number of
days
necessary to
identify an
object as a
kilonova

Maximize the certainty of the estimate of the properties of the kilonova

Photometry

Methods

Spectra

What is Photometry?

"Photometry is a technique in astronomy concerned with measuring the flux of an astronomical object's electromagnetic radiation over time."

- Especially important for studies of transient objects like kilonovae
- > Each type of transient has different characteristic lightcurves.
- Various means for objects to emit radiation black body, synchrotron, Bremsstrahlung

Methods

- Used Metzger 2017 model
 - Based on modeling the lightcurve of the ejecta as a black body
 - Determines mass of ejecta, velocity of ejecta, and lanthanide fraction
- Ran on GW170817 data, varying parameters
- Ran on various other transients –
 ATLAS 18 qqn, GRB 090426, GRB 051221A

GW170817 Lightcurve Passbands/filters: ugrizyHJK 14 days of data

Methods

1

Varying number of days

2

Varying starting day

3

Varying zero point and T0

4

Varying cadences

5

Varying passbands

GW170817_ZPT0 (Beginning Fixed)

Varying Number of Days § GW170817

- > X axis
 - the number of days of data used
 - Beginning fixed
- > Y axis
 - > the value of the parameter
- Violin plots
 - > show the distribution of the parameter.
 - Shorter and fatter == better

GW170817_ZPT0 (Beginning Fixed)

4.0

5.0

7.0

3.0

Varying Number of Days § GW170817

- Log likelihood
 - Larger == better
- $\triangleright \chi^2$
 - > Smaller == better
- > Fit worse because of more data
- > 4 day cutoff

Varying Number of Days §
Other Transient Objects

- > Types of transient objects
 - > Possible supernova, GRBs
- > Irregularity of properties
- Lowness of log likelihood

Varying starting day

- > ATLAS18qqn
 - Regular properties
 - > Low likelihood
- > GRB051221A
 - Irregular properties
 - Low likelihood before2 days after

Varying zero point and TO

- Distance calculation errors
 - Causes lower relative magnitude
- > ATLAS18qqn
 - Regular properties
 - > Higher log likelihood

Varying Cadences

- > X axis
 - Number of days in between data collection
 - Cad1 == every night
- Different cadences do not lose too much information
- Cad2 rise in log likelihood due to less data
- Cad3 fall in log likelihood due to poor fit

GW170817: Cadences

2.42

2.40

cad3

cad2

Cadences

cad3

Cadences

-10.2

GW170817: Passbands

Log Likelihood

-10

ugrizyHJK

Varying Passbands

- > X axis
 - Different combinations of various wavelength filters
- Clearly need all passbands to accurately determine properties
- Rise in log likelihood again due to less data

Discussion

- Determined best parameters to identify kilonovae
 - Log likelihood > -10
 - > 4 days of data
- Other requirements
 - Need early data
 - Need to fix zero point and TO
 - Need to take data at least every other day
 - Need all passbands

Credit: Palomar Observatory

Spectra

Astronomical Spectroscopy is a method of astronomy which measures the spectrum of electromagnetic radiation which radiates from stars and other celestial objects in order to determine their various physical properties.¹

- Used Kasen et al 2017 model
 - Based on modeling the spectra of the ejecta not only as a blackbody
 - Determines mass of ejecta, velocity of ejecta, and lanthanide fraction
- Created a whitening technique

Whitening

Whitening is a technique in which the average is divided out of a dataset.

- Our application
 - In each wavelength bin, take the average over the various days' spectra and then divide it out.
- > Mhy?
 - Enhances the smaller features and lessens focus on overall magnitude
 - \blacktriangleright M_{ej} determines magnitude; V_{ej} and Lanthanide fraction determine bumps and wiggles
 - \triangleright We want a better fit of all properties, not just M_{ej}

GW170817 (Without Whitening) Log Likelihood: -76.28 ± 0.10

GW170817 (Whitened) Log Likelihood: Unknown

Future Work

- Test spectra model with varying numbers of days of spectra
- Test spectra model on other types of transients
- Test setup with LIGO open public alerts
- Add other models for other transient objects
 - Compare log likelihoods instead of using a cutoff point

Acknowledgements

- I'd like to thank my two amazing mentors, Alex Urban and Michael Coughlin!
- I'd also like to thank both LIGO Laboratory and the SFP office for supporting me throughout my journey this summer!