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1. Introduction

In 1916, Albert Einstein predicted the existence of gravitational waves, rip-
ples created by accelerating masses that would propogate through spacetime
[1,2]. However, he believed they would be too small for human detection. On
September 14, 2015 at 09:50:45 UTC, nearly one century after Einstein’s predic-
tion, both detectors of the Laser Interferometric Gravitational-wave Observa-
tory (LIGO) simultaneously observed a transient gravitational-wave signal [3].
This was the first direct detection of gravitational waves, as well as the first
detection of a binary black hole merger. The two LIGO obeservatories are in
Livingston, LA and Hanford, WA. Each instrument is a dual-recycled Michelson
interferometer with 4 km arms [4]. LIGO’s discoveries were made possible by a
factor of 10 sensitivity improvement in the frequency regime around 100 Hz.

One of the challenges for LIGO is differentiating between signal and noise.
Transient noise arises as short O(seconds) glitches in the data that can mimic
true transient astrophysical gravitational wave signals including binary black
hole mergers. One powerful method to identify signals with waveforms that
are well predicted by Einstein’s relativity, including neutron star and black hole
binaries, is matched filtering, which calculates the cross-correlation between
modeled templates and the noisy gravitational wave detector data. The PyBC
pipeline, which identified all LIGO discoveries to date, employs matched filter-
ing to calculate the signal-to-noise ratio (SNR) between all modeled templates
considered in a gravitational wave search. To help make the pipeline more ro-
bust to noise, PyCBC uses a x? test to downweight the SNR. of events where the
data does not match the modeled template well. Any times were the re-weighted
SNR is above threshold are saved as "triggers” [5]. Any given trigger will have
multiple associated modeled templates with non-zero re-weighted SNR, each
with individual re-weighted SNR tends to be densely clustered in total mass
and effective spin.

One of the outputs of this process is a set of parameters, such as total
mass, effective spin, and maximum re-weighted SNR [6]. These parameters



can be plotted for a given stretch of data. For gravitational wave signals, the
plots typically have a compact area of high maximum re-weighted SNR, with a
relatively low re-weighted SNR over other values of total mass and effective spin.
If the event is noise, typically maximum re-weighted SNR is not well localized
in these template parameters.

Our approach to improving the PyCBC pipeline performance by limiting
the impact of transient noise is to use a convolutional neural network and im-
age classification. A neural network is a biology-inspired computer program in
which a computer learns a specified task from a series of provided ‘training’
examples. Neural networks have successfully been used to classify images of
LIGO data in the past [7]. We will build an image classifier that takes as input
a plot representing the distribution of templates associated with a trigger time
in total mass and effective spin. We expect that the much more well-localized
appearance of true signals in this parameter space will serve as a powerful dis-
tinguishing feature for our machine learning image classifier.

2. Objectives

The aim of my summer research project is twofold:
1) Create a convolutional neural network that will differentiate signal and noise
in LIGO data

2) Test this algorithm’s performance on increasingly large data sets

3. Approach

I will first design and build a simple convolutional neural network (CNN) algo-
rithm that can intake images of the total mass and effective spin distribution of
PyCBC triggers and output some likelihood that the trigger belongs to the ‘sig-
nal’ class or the ‘noise’ class. Next I will need to develop a training set to train
the CNN to make accurate classifications. I will inject a series of simulated
gravitational wave signals into data from Advanced LIGO’s second observing
run and flag each of these as part of the ‘signal’ class. For the glitch class, I will
use glitch examples identified by Gravity Spy.

After I have trained the CNN with known examples of both the signal and
glitch classes, I will test it with a test data set. To ensure this data is indepdent
from the training set I will use a different period of Advanced LIGO data, and
I will follow the same method as above to inject signal examples and identify
glitch examples. I will evaluate the performance of the CNN by producing
a confusion matrix for the test data which will calculate the fraction of mis-
classified PyCBC triggers for each class. I anticipate tuning the CNN based on
these results.

At this point, I will be ready to expand my training set and data set to
an extended set of O2 data. Then, I will produce and analyze my results.
All simulations will be run from my personal laptop using Caltech’s LDAS
computing cluster for computational power.



4. Project Schedule

I will follow the timeline below:

Weeks 1-2: Learn LIGO software and computing clusters, assemble basic
code

Weeks 3-5: Tune algorithm using isolated test cases

Weeks 6-8: Run on extended data set

Weeks 9-10: Combine results, prepare final report and presentation
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