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1. Introduction

In 1916, Albert Einstein predicted the existence of gravitational waves, rip-
ples created by accelerating masses that would propagate through spacetime
[1,2]. However, he believed they would be too small for human detection. On
September 14, 2015 at 09:50:45 UTC, nearly one century after Einstein’s predic-
tion, both detectors of the Laser Interferometric Gravitational-wave Observatory
(LIGO) simultaneously observed a transient gravitational-wave signal [3]. This
was the first direct detection of gravitational waves, as well as the first detection
of a binary black hole merger. The two LIGO observatories are in Livingston,
LA and Hanford, WA. Each instrument is a dual-recycled Michelson interfer-
ometer with 4 km arms [4]. LIGO’s discoveries were made possible by a factor
of 10 sensitivity improvement in the frequency regime around 100 Hz.

One of the challenges for LIGO is differentiating between signal and noise.
Transient noise arises as short O(seconds) glitches in the data that can mimic
true transient astrophysical gravitational wave signals including binary black
hole mergers. One powerful method to identify signals with waveforms that
are well predicted by Einstein’s relativity, including neutron star and black hole
binaries, is matched filtering, which calculates the cross-correlation between
modeled templates and the noisy gravitational wave detector data. The PyBC
pipeline, which identified all LIGO discoveries to date, employs matched filtering
to calculate the signal-to-noise ratio (SNR) between all modeled templates con-
sidered in a gravitational wave search. To help make the pipeline more robust
to noise, PyCBC uses a χ2 test to downweight the SNR of events where the data
does not match the modeled template well. Any times where the re-weighted
SNR is above threshold are saved as "triggers” [5]. Any given trigger will have
multiple associated modeled templates with non-zero re-weighted SNR, each
with individual re-weighted SNR tends to be densely clustered in total mass
and effective spin.

One of the outputs of this process is a set of parameters, such as total
mass, effective spin, and maximum re-weighted SNR [6]. These parameters



can be plotted for a given stretch of data. For gravitational wave signals, the
plots typically have a compact area of high maximum re-weighted SNR, with a
relatively low re-weighted SNR over other values of total mass and effective spin.
If the event is noise, typically maximum re-weighted SNR is not well localized
in these template parameters.

Our approach to improving the PyCBC pipeline performance by limiting
the impact of transient noise is to use a convolutional neural network and im-
age classification. A neural network is a biology-inspired computer program in
which a computer learns a specified task from a series of provided ‘training’
examples. Neural networks have successfully been used to classify images of
LIGO data in the past [7]. We will build an image classifier that takes as input
a plot representing the distribution of templates associated with a trigger time
in total mass and effective spin. We expect that the much more well-localized
appearance of true signals in this parameter space will serve as a powerful dis-
tinguishing feature for our machine learning image classifier.

2. Objectives

The aim of my summer research project is twofold:
1) Create a convolutional neural network that will differentiate signal and noise
in LIGO data
2) Test this algorithm’s performance on increasingly large data sets

3. Approach

I will first design and build a simple convolutional neural network (CNN) algo-
rithm that can intake images of the total mass and effective spin distribution of
PyCBC triggers and output some likelihood that the trigger belongs to the ‘sig-
nal’ class or the ‘noise’ class. Next I will need to develop a training set to train
the CNN to make accurate classifications. I will inject a series of simulated
gravitational wave signals into data from Advanced LIGO’s second observing
run and flag each of these as part of the ‘signal’ class. For the glitch class, I will
use glitch examples identified by Gravity Spy.

After I have trained the CNN with known examples of both the signal and
glitch classes, I will test it with a test data set. To ensure this data is inde-
pendent from the training set I will use a different period of Advanced LIGO
data, and I will follow the same method as above to inject signal examples and
identify glitch examples. I will evaluate the performance of the CNN by pro-
ducing a confusion matrix for the test data which will calculate the fraction of
mis-classified PyCBC triggers for each class. I anticipate tuning the CNN based
on these results.

At this point, I will be ready to expand my training set and data set to
an extended set of O2 data. Then, I will produce and analyze my results.
All simulations will be run from my personal laptop using Caltech’s LDAS
computing cluster for computational power.



4. Project Schedule

I will follow the timeline below:

Weeks 1-2: Learn LIGO software and computing clusters, assemble basic
code

Weeks 3-5: Tune algorithm using isolated test cases
Weeks 6-8: Run on extended data set
Weeks 9-10: Combine results, prepare final report and presentation

5. Current Work

Upon my initial arrival at Caltech, I began to familiarize myself with LIGO
data through Gravity Spy. I practiced categorizing different types of glitches so
that I could develop intuition categorizing noise and distinguishing it from sig-
nals. This work was important for the potential to need to troubleshoot further
in the project when building the training and test data sets. I then designed the
data feature that I intend to feed into the machine learning algorithm, studying
how the SNR varied with certain parameters like end time, mass, and spin, to
name a few. I more strictly defined the information to feed into the classifier so
that I can reliably represent the data that I am putting into the classifier, and
I modified the existing software to automate plots for an inputted time.

Once I familiarized myself with promising feature sets for a signal, I then
tested the plots on noise. I used Python to find the times that had maximum
SNR and were not artificial. I reran the same density plots, this time using noisy
data, and searched for more interesting behavior. I decided that the plots of
reduced χ2 v. template duration and end time v. template duration exhibited
the most distinct behavior. Once I had done a preliminary analysis of the
plots, I modified the code so that it would display the data with more confined
axis limits and only analyze that portion of the data. Part of this required
that I modify the binning of the data so that it would best display meaningful
information. Examples of the impact of binning can be seen below in Figure 1.

Alongside my work on the aforementioned tasks, I also read about CNNs in
Keras and TensorFlow and tested some sample scripts to familiarize myself with
the steps of creating a CNN so I would be prepared for the next step of injecting
this data into a CNN. The next step for me is to write code to automate this
generation on the top 100 or so SNR times within any given data set to see if
similar shapes hold with another data set.

6. Challenges

One of the difficulties that arose thus far was determining what made the
plots interesting enough to consider them as viable for training the CNN. I
struggled to develop an understanding of what combinations of data would pro-
vide a meaningful plot, especially since a large portion of that entailed learning
how to quickly yet effectively interpret code written by someone else. A similar
problem that arose from that issue was doing unnecessary work. It took me a



Figure 1: The top figure is an example of bad binning, where the bins are too
wide to effectively distinguish the shape of the distribution. On the bottom, the
binning has been adjusted so that a more distinct feature space can be seen.

long time to find out that code that I had been writing was already part of the
code I was using, just hidden under different names or deeper in source code.

Another difficulty was determining how to constrain the plots that would al-
low high levels of clarity for data sets with differing distributions. This required
studying the behavior that signals had and finding variations across different
noise data sets to look for different patterns. Changing the binning was a sig-
nificant step towards remedying this issue, and utilizing the potential to run the
CNN over different data constraints will help in the future.

Potential issues that I could see arriving in the future include needing to
modify the windows for CNN to use to determine if the data is signal or noise,
perhaps not seeing as clear of patterns with other data sets and thus needing
to modify my search parameters, and difficulty in defining strict parameters as
to what constitutes a signal for these two sets of plots and what happens if
it passes by one test but fails by another. There is also the potential for the
CNN to only work well with either low or high mass systems, not the both.
This would require me developing a second way to test for the opposite case.
Regardless, the CNN will not be able to distinguish between signal and noise



at low SNR because they become indistinguishable. Moving onto newer data
sets also raises the potential for issues to arise. Many of the problems that may
arise will not surface until I am able to run the CNN. I also will not know if the
CNN is efficient or effective until I attempt to use it to classify information.
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