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Abstract

Due to the emission of gravitational wave (GW) radiation, most compact binaries are expected

to circularize before emitting GW in the LIGO frequency band. However, if a binary black hole

system resulted from dynamical capture or hierarchal triple interactions close to the end of its life,

there is a probability that the system could retain non-negligible eccentricity while in the LIGO

band. As such, observing eccentricity from a gravitational wave signal could be a clear signature

of dynamical origins. Despite the observational importance of eccentricity, the techniques needed

to detect and characterize it currently remain in their early stages. We seek to model and assess

detectability and identifiability of eccentric binary black hole systems, aiming to discover how

accurately we can estimate parameters of an eccentric waveform. In particular, we search for

degeneracies between eccentricity and other higher order effects, such as spin precession. We

employ a variety of data analysis techniques, including calculating overlaps between waveforms,

constructing likelihood distributions, and performing Bayesian inference.
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I. INTRODUCTION

To date, LIGO’s gravitational wave detectors have observed gravitational waves from

six binary black holes and one binary neutron star [1–6]. The observed binary black hole

(BBH) coalescences follow a consistent pattern: the systems have quasi-circular orbits that

decrease in radius and increase in frequency as they lose energy in the form of gravitational

radiation. All observed gravitational waves from BBH fit a “chirp” waveform while within

the LIGO frequency band (a minimal orbital frequency of 10 Hz, or a gravitational wave

frequency of 20 Hz); their amplitude and frequency increase as the binary evolves [19]. The

plots in Figure 1 show predicted chirp waveforms; Figure 2 shows an “actual” waveform,

or bandpassed, filtered data from GW150914, LIGO’s first detected gravitational wave [12].

Although General Relativity predicts subtle effects from eccentricity, LIGO data analysis

methodology presently uses waveform templates that assume a negligible eccentricity; highly

eccentric BBH could go undetected with current technology. Additionally, many properties

of BBH are currently calculated with the assumption of circular orbits, such as their distance

from Earth [19]. Identifying eccentricity could make such calculations more accurate, and

will yield a better understanding BBH formation mechanisms and the stellar environments

in which they reside.

FIG. 1: Chirp waveform predicted using effective-one-body approach (left) and numerical

relativity simulations (right) for same initial conditions. Figure from [19]

In this report, I describe the work with the “eccentricity problem” that I have thus com-

pleted this summer. Section II outlines the objectives for this project. In Section III, I

describe binary black hole formation mechanisms that could result in measurable eccentric-

ity. In Section IV, I discuss how orbital period, semi-major major axis, and eccentricity

evolve over time during an eccentric inspiral. Section V introduces waveforms for BBH

with eccentricity; here I present the equations for the emitted gravitational wave strain and
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FIG. 2: Strain (h(t)) plotted against time (t) for GW150914, LIGO’s first GW detection.

This plot shows data that has been filtered, i.e. subject to band-passing and line removal.

L1 is the data from the Livingston, Louisiana detector; H1 is the data from the Hanford,

Washington detector. Figure from [12]

describe unique characteristics of such waveforms. In Section VI, I describe the Bayesian

Inference framework used for data analysis. In Section VII, I present interim results. Chal-

lenges that I have thus encountered are discussed in Section VIII, and an outline for the

remainder of the summer is given in Section IX.

II. OBJECTIVES

The aim of this project is to build on existing research to assess detectability and iden-

tifiability of eccentric binary black holes. We will focus on three groups of questions:

1. What are key features of eccentric waveforms in the time and frequency domains? In

Python, we will create a waveform family for a range of initial eccentricities using a

lowest order Parametrized Post-Newtonian approximation and compare these wave-

forms to existing models in LALSuite. As a function of phase difference, how do these

eccentric waveforms deviate from quasi-circular waveforms?

2. Does eccentricity make GW signals from BBH harder to detect? Specifically, how

much signal-to-noise ratio (SNR) can be lost if a search pipeline use a quasi-circular

binary template (with no higher order effects) to capture an eccentric binary merger

event? We will calculate this as a function of the initial eccentricity (e.g. eccentricity

at GW frequency of 20 Hz) and the masses of the two black holes.

3. How well can the eccentricity parameter be extracted from an observed event, using

Bayesian parameter estimation and MCMC techniques? Are there any degeneracies
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between eccentricity and chirp mass, mass ratio, and/or spin that affect our ability

to extract the eccentricity parameter from a data set? Furthermore, are there any

degeneracies between eccentricity and other higher order effects like spin precession?

III. BINARY BLACK HOLE FORMATION MECHANISMS

Binary black holes have several formation mechanisms, the two most widely understood

being common binary evolution and dynamical interaction in dense stellar environments

such as globular clusters or galactic nuclei. Evolutionary trajectories for both formation

mechanisms predict that under most circumstances, the orbits of BBH systems will have

circularized by the time their emitted gravitational radiation is within the LIGO band.

However, if a BBH forms via dynamical capture with an extremely large eccentricity and/or

extremely close to the end of its lifetime (i.e., a small periastron), there is a probability that

the system could be detected using quasi-circular templates while still in a non-circular orbit

[1]. Dense stellar regions, such as galactic nuclei and globular clusters that have undergone

mass segregation, are prime spots for dynamical BH-BH capture. In such settings, individual

black holes can become gravitationally bound during close passage as energy is lost in the

form of a GW burst[10].

Another possibility for observing an eccentric BBH in the LIGO band is via a hierarchal

triple, a quasi-stable three-body system where one BBH is orbited by another black hole.

Ellipticity can be produced in hierarchal triples through angular momentum exchange from

the inner binary and the larger system, in what is known as the Kozai-Lidov mechanism

[13, 17].

IV. ECCENTRIC BINARY INSPIRAL EVOLUTION

The evolution of compact binary coalescences can be broken into three phases: inspiral,

merger, and ringdown. We focus on the inspiral phase, as once the CBC enters merger

eccentricity no longer produces distinguishable effects. The inspiral phase is the longest

phase in a CBC, ending when the objects reach their innermost stable circular orbit (ISCO).

This occurs at the following condition for semi-major axis length a:
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aISCO = 6
G (m1 + m2 )

c2
. (1)

In his paper “Gravitational Radiation from Post-Newtonian Sources and Inspiralling

Compact Binaries,” Luc Blanchet derives the following coupled lowest order ordinary differ-

ential equations describing period decay and eccentricity decay of a BBH during the inspiral

phase [7]:

Ṗorb = −192π

5c5

(
2πG

Porb

)5/3
m1m2

(m1 +m2)1/3

(
1 +

73

24
e2 +

37

96
e4
)(

1− e2
)−7/2

, (2)

ė = −608π

15c5
e

Porb

m1m2

(m1 +m2)1/3

(
1 +

121

304
e2
)(

1− e2
)−5/2

. (3)

It is important to note that these equations ignore spin effects and higher order effects, such

as spin precession or higher order modes. Blanchet integrates analytically to determine that

orbital period and eccentricity are related via

c0P
19/9 =

e2

(1− e2)19/6

(
1 +

121

304
e2
)145/121

(4)

where c0 is a constant determined by the initial conditions of the orbit. Numerically solving

(2) and (3) with the initial conditions of Porb,0 = 0.3s and e0 = 0.4 yields the time series for

orbital period and eccentricity shown in Figure 3. Additionally, a time series for semi-major

axis length a was calculated from Kepler’s Third Law (also seen in Figure 3),

a =

[
Porb

2

(
G(m1 +m2)

4π2

)]1/3
. (5)

FIG. 3: Time evolution of eccentricity, orbital period, and semi-major axis for BBH system

with initial orbital period of 0.3 seconds and initial eccentricity of 0.1.
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The shape of the time series’ for orbital period and eccentricity depend on initial orbital

period, initial eccentricity, chirp mass, and mass ratio. As initial eccentricity, or for our

purposes, the eccentricity at an orbital period of 0.1s (corresponding to the lowest frequency

in the LIGO band) increases, the duration of the CBC in the LIGO band decreases; the

BBH reaches ISCO in a shorter amount of time. As total mass increases and/or mass ratio

decreases, the duration of the BBH in the LIGO band also decreases. These patterns can

be seen in Figures 4, 5, and 6.

FIG. 4: Orbital period time series and eccentricity time series with varying values of eccen-

tricity at an initial period of 0.1s.

V. WAVEFORM MODELS

Once a dynamically captured BH pair is in eccentric orbit, a GW burst is theorized to

be emitted every time the pair passes at a close encounter (i.e. at periastron). This causes

the semi-major axis (a) and eccentricity (e) to decrease with time, while orbital frequency

increases with time. After sufficient energy is lost through gravitational radiation, the BH

pair will merge.
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FIG. 5: Orbital period time series and eccentricity time series with varying total masses.

All series have a mass ratio of 1.

FIG. 6: Orbital period time series and eccentricity time series with varying mass ratios.

m1 always equals 5 solar masses, and m2 ranges from 5 solar masses to 35 solar masses in

increments of 5 solar masses.
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A. Generating a Waveform Model using Python

Gravitational wave strain, h(t) is generated by an accelerating quadrupole moment, I:

h(t) ∼ d2

dt2

(
I) where I =

∫
ρ r2 dV . Without taking the effects of eccentricity into account,

this strain is optimized in (6) where d is the distance to the source, a is the distance between

the orbiting bodies, m1 and m2 are the masses of the BH, and ϕ(t) is the phase evolution:

h(t) =

(
2G(m1 +m2)

c2d

)(
2G(m1 +m2)

c2a

)
cos(2ϕ(t)) . (6)

However, BBH in eccentric orbits produce a more complicated GW strain, due to emitting

GW bursts at periastron passage, periastron precession, and the consequent oscillating dis-

tance between the orbiting bodies. The location of a body in an eccentric orbit can be

defined using two angles: ψ and φ. ψ, also know as the true anomaly, corresponds to the

radial period; it is taken with respect to the semi-major axis. However, due to periastron

precession, the semi-major axis is itself rotating. φ takes this into account; it corresponds

to the orbital period. It is taken from a fixed axis in space, while the axis from which ψ is

taken is rotating. See Figure 7 for a visualization.

FIG. 7: Diagram showing difference between φ and ψ in an eccentric binary. φ is the angle

between r and a fixed x-axis in m2’s (the larger mass) frame of reference, while ψ is the

angle between r and the precessing semi-major axis a.
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Taking these effects into account, the plus and cross polarizations for gravitational wave

strain from an eccentric BBH system are:

h+(t) =
µ

2D

([
1 − 2 cos

(
2θ
)
cos 2

(
φ(t)

)
− 3 cos

(
2φ(t)

) ]
ṙ 2(t)

+

(
3 + cos

(
2θ
))[

2 cos
(
2φ(t)

)
φ̇ 2(t) + sin

(
2φ(t)

)
φ̈(t)

]
r 2(t)

+

[
4

(
3 + cos

(
2θ
))

sin
(
2φ(t)

)
φ̇(t)ṙ(t)

+

(
1 − 2 cos

(
2θ
)
cos 2

(
φ(t)

)
− 3 cos

(
2φ(t)

))
r̈(t)

]
r(t)

)
, (7)

h×(t) = −2µ cos(θ)

D

(
sin
(
2φ(t)

)
ṙ2(t) +

[
cos
(
2φ(t)

)
φ̈(t) − 2 sin

(
2φ(t)

)
φ̇2(t)

]
r2(t)

+

[
4 cos

(
2φ(t)

)
φ̇(t) ṙ(t) + sin

(
2φ(t)

)
r̈(t)

]
r(t)

)
(8)

where µ is the reduced mass of the binary, D is the distance to the source, θ is the angle of

inclination of the source, r is the distance between the two BHs, and φ is angle corresponding

to the orbital period [9].

To solve for the strain, we need to time evolve r and φ, which is done using the energy and

angular momentum of the system. In this derivation we use the Newtonian approximations

of these quantities. The Newtonian definition of orbital energy Eorb for an elliptical orbit

with total mass Mtot, reduced mass µ, and semi-major axis length a is, in Joules:

Eorb = K + U =
U

2
= −GMtot µ

2a
(9)

where K + U = U
2

is the Virial Theorem for gravity. The Newtonian definition of orbital

angular momentum Lorb is as follows, in kg m2/s:

Lorb =
√
GMtot µ a (1 − e2) . (10)

From these definitions, we can express the quantities of specific total energy and specific
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angular momentum, in geometric units (G=c=1), to be used throughout the remainder of

the report:

E = 1 +
Eorb

µ
, L =

Lorb

µ
. (11)

The distance r between the two BH’s is:

r =
a
(
1− e2

)
1 + e cosψ

(12)

where ψ is the true anomaly of the eccentric system (see Figure 7). To generate a time series

for r, we must time evolve ψ using the following equation, adapted from [9]:

ψ̇ =
(1 − E2)

1/2

Vt (1 − e2)

[
a (1− e2) − C0 (1− e) − e a (1− e2)− eC0 (1− e) cos(ψ)

]1/2
[
a (1− e2) (1 + e)

]1/2
(13)

where the constant C0 is given by:

C0 =
2

1− E2
− 2a (14)

and potential Vt is given by:

Vt =
E r4

r2 − 2r
(15)

.

Finally, to solve the gravitational wave strain equations given in (7) and (8), we must

generate a time series for φ, the angle describing where a body is in its orbital period

(see Figure 7). This is achieved with the following relationship between φ̇, specific angular

momentum, and potential Vt [9]:

φ̇ =
L

Vt
. (16)

Choosing an initial period and eccentricity, solving for the time evolution of r and φ, and

substituting into (7) and (8) yields the time series shown in Figure 8. This model shows the
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unique feature appearing in a waveform generated by a BBH system in an eccentric orbit:

bursts of gravitational wave radiation produced at periastron passage. As initial eccentricity

increases, these bursts increases in magnitude. Additionally, just like non-eccentric wave-

forms, this model shows the characteristic chirp behavior of a CBC: amplitude and frequency

of the the GW strain increase as the binary evolves.

FIG. 8: Time series waveforms generated by the model described in Section V A. with initial

orbital period P0 = 0.1s and initial eccentricities e0=[0.0001, 0.001, 0.01, 0.1, 0.3, 0.5]. All

waveforms are from a source with a distance of 1000 megaparsecs, masses m1 = m2 = 10M�,

and an inclination angle θ = π/4. All plots show the final second before merger.

Although the model I created captures the key qualitative features of an eccentric BBH

inspiral, the Newtonian approximations made for energy and angular momentum prevent it

from being quantitatively accurate. Future work for this project might include improving

this waveform model. Because of this inaccuracy, the EccentricTD and EccentricFD models

(see Section V B.) are used for data analysis in the remainder of this report. See Section

VII A for quantitative measurements of this discrepancy.
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B. Existing Models

Presently, only one waveform model in the time domain - EccentricTD - and one model

in the frequency domain - EccentricFD - that include the effects of eccentricity exist in the

LIGO Scientific Collaboration Algorithm Library Suite (LALSuite) [11]. Like the waveforms

generated in Section V A, these waveform families only model the inspiral phase of a CBC.

Examples of time series plotted with EccentricTD and frequency series plotted with Eccen-

tricFD with varying initial eccentricity values can be seen in Figures 9 and 10. Note that

the right three plots in Figure 10 are noisy. At this time we are unsure if this effect is due

to physical reasons, inherent problems with the EccentricFD waveform, under-sampling in

the frequency domain, or some other cause.

Models including the merger and ringdown phases of an eccentric CBC have been calcu-

lated, such as in the paper “Observing complete gravitational wave signals from dynamical

capture binaries” by East et al [10]; these models have not yet been incorporated into LAL-

Suite. See Figure 11 for a plot of an example of a full inspiral-merger-ringdown time series.

FIG. 9: Time series waveforms generated with the EccentricTD approximant at initial

eccentricities e0=[0.0001, 0.001, 0.01, 0.1, 0.3, 0.5]. All waveforms are from a source with

a distance of 1 megaparsec and masses m1 = m2 = 10M�. All plots show the final second

before merger. Approximant from [11].
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FIG. 10: Magnitude of frequency series waveforms generated with the EccentricFD approx-

imant at initial eccentricities e0=[0.0001, 0.001, 0.01, 0.1, 0.3, 0.5]. All waveforms are from

a source with a distance of 1 megaparsec and masses m1 = m2 = 10M�. The frequency axis

shows the range 20 Hz to 225 Hz. Waveform model from [11].

FIG. 11: Gravitational wave strain plot generated by the model described in East et al. for

a periastron rp = 0.8M and an eccentricity e = 1. The top panel shows the entire waveform;

the bottom panel shows a zoomed-in view of the end of the waveform. Figure from [10]
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VI. BAYESIAN FRAMEWORK

Bayesian inference is the leading tool in parameter estimation in gravitational wave sci-

ence. In the context of GW parameter estimation, data is compared with a parametrized

model. Bayes’ Theorem can be used to calculate a posterior probability density distribution

for the model parameters as follows:

p(~θ | d,H) =
p(d | ~θ,H) p(~θ |H)

p(d |H)
(17)

where ~θ is a vector containing unknown parameters, d = {d1, d2, . . . , dNf
} is the data rep-

resented as strain measurements in Nf discrete frequency bins, and H is a given model.

p(~θ | d,H) is the posterior, or the probability that the gravitational wave strain was gener-

ated by a system with certain set of parameters ~θ given the data d and assuming a particular

model H. p(d | ~θ,H) is known as the likelihood, also represented with the letter L. The like-

lihood is the probability of measuring the data d given a set of parameters and assuming a

particular model. p(~θ |H) is the prior, representing prior understanding of the distribution

of the parameters in nature. For example, a trivial prior is that an angle must lie between

0 and 2π; a non-trivial prior could be a non-informative or Jeffrey’s prior on eccentricity,

which is proportional to the square root of the determinant of the Fisher information ma-

trix. Finally, p(d |H) is the evidence, a normalization constant that does not effect a single

posterior distribution, but can be used to compare different models using Bayesian Model

Comparison [8].

The function to calculate the likelihood distribution for data d and parameters ~θ is:

L = p(d | ~θ) = N exp

(
−1

2
〈h(~θ)− d |h(~θ)− d〉

)
(18)

where h(~θ) is the gravitational wave strain generated by a system with parameters ~θ and

N is an arbitrary constant that gets canceled out by the evidence term in the posterior

distribution. The noise weighted inner product 〈 a | b 〉 is equal to:

〈 a | b 〉 = 4<
∫ ∞
0

ã(f) b̃∗(f)

Sn(f)
df (19)

where Sn(f) is a power-spectral density (PSD) for the noise in the system.
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VII. INTERIM RESULTS

This section presents the results that have thusfar emerged from this project. Section A

presents a quantitative measure of difference between the waveform model I generated using

Python in Section V and the EccentricTD model in LALSuite [11]. In Section B, I introduce

a means of exploring the difference between two waveforms: their phase evolution. In Section

C, I present the results from attempting to recover an eccentric waveform injection using a

quasi-circular, non-spinning waveform. Section D discusses recovering an eccentric waveform

injection with an eccentric waveform, exploring the question: Is eccentricity measurable if

we use an eccentric waveform family and all other parameters are known? Finally, Section

E discusses the onset of the final portion of the project: looking for degeneracies between

eccentric and other effects, like spin.

A. Overlap Between My Waveform and EccentricTD

As explained in Section V, the waveform model in generated in Python (see Figure 8)

captures the qualitative features of an eccentric binary inspiral, but is not quantitatively

accurate due to several approximations made in the derivation. Such approximations include

using Newtonian definitions for energy and angular momentum. The EccentricTD model in

LALSuite [11] is a more quantitatively accurate waveform template (see Figure 9). However,

it is important to note that EccentricTD and EccentricFD do not include spin effects and

the EccentricFD waveform looks noisy at high eccentricities for unknown but probably

unphysical reasons. To compare my model with EccentricTD, I calculated overlaps between

them. The equation to calculate overlap between two vectors a and b is given in (20):

O =

[
〈 a | b 〉

〈 a | a 〉1/2 〈 b | b 〉1/2

]
max.t,ϕ

(20)

where 〈 a | b 〉 is the noise weighted inner product between a and b (19). In this case, the

two vectors a and b are the time series for the strain for my waveform and an EccentricTD

waveform with the exact same input parameters. Overlap is a value between 0 and 1,

where 1 indicates that a and b are the same vector and 0 indicates that they are completely

different vectors. Essentially, the overlap between waveforms is their dot product in the
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parameter space. Figures 12 and 13 show, in the mass and eccentricity space, the results of

calculating overlap between a waveform generated as described in Section V A and waveform

generated using the EccentricTD approximant with the same input parameters. Figure 12

shows overlap over an eccentricity range of 0.05 to 0.45, while Figure 13 zooms in on the

low-eccentricity range (0.005 to 0.1), as it is more probable in nature [13].

FIG. 12: Overlaps between a waveform generated as described in Section V A and waveform

generated using the EccentricTD approximant with the same input parameters. Shown in

the input parameter space of mass and eccentricity, with a mass range from 2 - 30 M�
sampled every 2 M�, and an eccentricity range of 0.05 - 0.45 sampled in increments of an

eccentricity of 0.05. Overlaps calculating using filter package from [15].

FIG. 13: Same as Fig. 12 but in different eccentricity range and higher sampling rate: a

mass range from 2 - 30 M� sampled every 2 M�, and an eccentricity range of 0.005 to 0.1,

sampled in increments of an eccentricity of 0.005.
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The dominant trends in these results are that: as mass increases, the overlap between the

two waveforms increases; as eccentricity increases, the overlap decreases. As mass increases,

the time the BBH spends in the LIGO band decreases, meaning the time series has less

elements and thus less room for dissimilar elements between the two waveform models.

As eccentricity increases, the bursts at periastron passage in the waveform become more

pronounced, amplifying any differences between the two waveform models. The average

overlap between the waveforms in the mass range 2 - 30 M� is listed in the following table:

e0 range No. of data points Average h+ overlap Average h× overlap

0.05 to 0.5 150 0.31504 0.31624

0.005 to 0.1 300 0.36644 0.36725

B. Differences in Phase Evolution for Eccentric vs. Non-Eccentric Waveforms

A potentially distinguishing feature of a waveform is its phase evolution. Phase can be

extracted from the complex strain of a waveform: hc = h+ + i h× where h+ and h× are the

plus and cross polarizations of the gravitational wave. The phase evolution of waveforms

with various eccentricities can be seen in Figure 14.

Subtracting the phase time series of an eccentric waveform from the phase time series

of a waveform with negligible eccentricity yields the results seen in Figure 15. The larger

the difference in eccentricity between two waveforms, the larger the difference in phase is

between them. Additionally, as e0 increases, the phase difference has a more pronounced

sinusoidal component. Future work includes developing a quantitative function to describe

this relationship.

Another characteristic of phase that draws interest is its derivative (see Figure 16). The

relationship between phase of a gravitational wave and its frequency is:

ϕ(t) =

∫ t

0

2 π fGW (t) dt . (21)

Therefore, the derivative of the phase is directly proportional to the frequency, ϕ̇(t) =

2π fGW (t). In a non-eccentric case, the frequency of gravitational waves is calculated with

equation (22), which is simplified to (23):
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fGW (t) =
1

π

(
5

256

1

tc − t

)3/8(
GMc

c3

)−5/8
, (22)

fGW (t) = 134Hz

(
1.21Msun

Mc

)5/8(
1

tc − t

)3/8

. (23)

Here, tc is time of coalescence and Mc is chirp mass. Equations 21-23 are from [14]. There-

fore, the derivative of the phase of a waveform with negligible eccentricity is equivalent:

ϕ̇(t) = 2 π 134Hz

(
1.21Msun

Mc

)5/8(
1

tc − t

)3/8

. (24)

Future work for this project includes building upon this relationship to derive an equation

relating ϕ̇(t) and eccentricity.

FIG. 14: The phase evolution of waveforms with various eccentricities. All have masses of

m1 = m2 = 10M�, a lower frequency of 20 Hz, and the rest of the parameters set to default.

The top panel shows the phase evolution of the entire waveform; the bottom panel zooms

in on the last 0.3 seconds before ISCO. In the legend, e refers to the eccentricity when the

frequency of emitted GW is 20 Hz.
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FIG. 15: Time series of the difference in phase between waveforms with and without eccen-

tricity. All waveforms used have masses of m1 = m2 = 10M� and a lower frequency of 20

Hz. In the legend, e refers to the eccentricity when the frequency of emitted GW is 20 Hz.

FIG. 16: The derivative of phase evolution for waveforms with various eccentricities. All

have masses of m1 = m2 = 10M� and a lower frequency of 20 Hz. The top panel shows the

derivative of phase evolution of the entire waveform; the bottom panel zooms in on the last

0.3 seconds before ISCO. In the legend, e refers to the eccentricity when the frequency of

emitted GW is 20 Hz.
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C. Recovering Eccentric Waveform with Quasi-Circular, Non-Spinning Template

If an incoming gravitational wave signal is from a source with an eccentric orbit and it is

recovering using a template that assumes negligible eccentricity, the signal appears to have a

lower SNR and our accuracy for estimating other parameters, e.g. mass, are compromised.

The higher the eccentricity, the more SNR is lost when trying to recover this waveform

using a quasi-circular template. This is shown in Figure 17. Currently, we are working

on one-dimensional parameter estimation for mass using quasi-circular templates to recover

eccentric injections. Results will be reported in the future.

FIG. 17: SNR lost when using a template with no eccentricity to recover a waveform with

eccentricity and the same mass parameters as the non-eccentric template. Shown in the

input parameter space of mass and eccentricity of the injection, with a mass range from 5 -

20 M� sampled every 2.5 M�, and an eccentricity range of 0.01 to 0.29, sampled in

increments of an eccentricity of 0.05. All injections at a distance of 1000 MPc.

D. One Dimensional Parameter Estimation: Recovering Eccentric Waveform with

Eccentric Template

In this section, we seek to discover how well the eccentricity parameter be extracted

from an observed event when using a eccentric template to recover the waveform. We

calculate a likelihood distribution using equation (18) in just the one-dimensional parameter
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space of eccentricity, assuming all other parameters are known. Preliminary results for this

calculation for an injected waveform with an eccentricity of e0 = 0.05 are shown in Figure

18 for different systems with m1 = m2 = [5, 20, 60]M� and varying distances.

FIG. 18: One-dimensional likelihood distribution for recovering an EccentricTD injection

(e0 = 0.05) using an EccentricTD waveform with all parameter values the same except

eccentricity. Data sampled at eccentricity increments of 0.005.

These preliminary results indicate that an eccentricity of 0.05 stops being able to be

resolved when the system is at a distance between 1000 and 2500 Mpc for m1 = m2 = 5M�

and between 500 and 1000 Mpc for m1 = m2 = 20M� or 60M�. In future work, these

calculations will be repeated for more values of e0 and more distances.

E. Two Dimensional Parameter Estimation: Recovering Eccentric Waveform with

Non-Eccentric, Spinning Template

The remainder of this project focuses on searching for degeneracies between eccentricity

and other effects. We look for degeneracies with both internal parameters, like spin and

mass, and higher order effects such as spin precession. We plan to use LALinference to

run Markov Chain Monte Carlos using Bayesian Inference to perform parameter estimation

in a multi-dimensional parameter space. Until then, we just work in the two dimensional

parameter space of spin and eccentricity. We inject an eccentric waveform and attempt to

recover it using the SpinTaylorF2 approximant, a template without eccentricity but with

non-zero aligned spin. We calculate the likelihood using (18) between the spinning waveform

and the eccentric “data” at sample points in the parameter space of mass and spin.

Preliminary results of this process for an injected waveform with e0 = 0.1 and a mass of

5 M� are shown in Figures 19 and 20. These results indicated that the best fit waveform
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with spin for an eccentric injection has a non-zero spin and mass value slightly lower than

the injected mass. We will repeat this process for different ejected eccentricity and mass

combinations, and with different SNRs.

FIG. 19: 2-dimensional likelihood distribution in the mass-and-spin parameter space for

fitting a SpinTaylorF2 aligned spin waveform to an injection generated with EccentricTD

with e0 = 0.1, a mass of m1 = m2 = 5M�, and at a distance of 1000 Mpc. Distribution

calculated for a mass range of 2 - 10 M� sampled every 0.1 M�, and an spin range of -1.0

to 1.0, sampled in increments of spin of 0.05.

FIG. 20: The data displayed the plot in Fig. 19 projected onto the mass and spin axes.

Additionally, overlap was calculated using (20) at the same sample points in the mass-and-

spin parameter space. The results are shown in Figure 21. All overlaps are less than 0.04,
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meaning that even the best fit between the spinning and eccentric waveforms is very small.

In other words, that the aligned-spin non-eccentric and non-spinning eccentric waveforms

are very different, and should be very distinguishable from each other in data as long as the

SNR is sufficiently high.

FIG. 21: Similar plot to Figure 19 but for overlap instead of likelihood.

VIII. CHALLENGES

The challenges I have faced this summer have primarily been in debugging Python code.

To generate my eccentric waveform, I pulled equations from several different sources, each

using different unit systems (SI, geometric, normalized by total mass, etc.) and ran into

errors with correctly converting between different unit systems in Python. Additionally,

often my code caused the Jupyter notebooks kernel to die when handling large quantities of

data. I have had to work to make my code more optimized.

Another realm of challenges I have faced is juggling several different aspects of this project

- waveform generation, characterizing phase evolution of a waveform, parameter estimation,

looking for degeneracies - as well as different suggestions from mentors for what goals I

should focus on. I have learned to balance and prioritize different goals based on my own

interest as well as the interests of my mentors.
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IX. FUTURE

My project schedule for the remainder of the summer is as follows:

Week 8: Continue one and two dimensional parameter estimation for recovering eccentric

waveforms using eccentric templates to assess what values of eccentricity are detectable

at what SNR. Repeat using aligned spin templates to recover eccentric waveforms.

Begin LALinference runs to search for degeneracies between spin precession and ec-

centricity.

Week 9: Continue LALinference runs. Work on deriving functional fit for phase evolution

as a function of eccentricity and time. Start final presentation.

Week 10: Work on final presentation and tie up loose ends.
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