2025/07/17

■ Start with a Time Series - DFT:

$$C_{xy}^{(1)}\left(f_{k}\right) = \frac{2}{f_{s}\sum_{n}^{N-1}\omega^{2}(n)}\left(\sum_{n}^{N-1}\omega(n)\times(n)e^{-i2\pi f_{k}t_{n}}\right)\left(\sum_{n}^{N-1}\omega(n)y(n)e^{-i2\pi f_{k}t_{n}}\right)^{*}$$

 $H_{M}^{(2)}(f_{k}) = \int_{g_{1}}^{\omega} (f_{k}) / C_{g_{1}}^{(0)}(f_{k})$ (y-susceptible)

$$P_{xx}^{(i)}(f_{k}) = C_{xy}^{(i)}(f_{k}), \quad y \rightarrow x, \quad A_{xx}^{(i)}(f_{k}) = \int P_{xx}^{(i)}(f_{k})$$

$$Y(f_{k}) = C_{\times y}(f_{k}), \quad Y = C_{\times y}(f_{k}), \quad Y = C_{\times y}(f_{k})$$

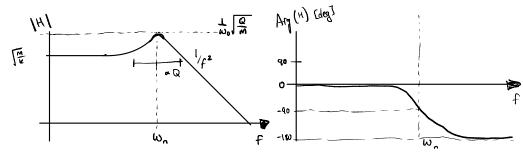
$$W(f_{k}) = H(f_{k}) \times (f_{k}) : \quad H_{m}^{(i)}(f_{k}) = C_{\times y}^{(i)}(f_{k}) / P_{\times x}^{(i)}(f_{k}) \quad (x-susceptible)$$
Transfer

Function

$$\chi^{2} = coherence = \frac{H_{m}^{(i)}(f_{k})}{H^{(i)}(f_{k})}$$

Pendulum

Review

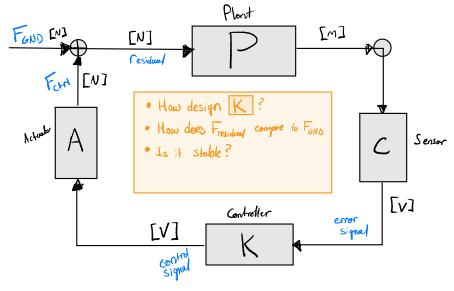

$$K_p = Ae^{+i\omega t}$$
 $K_p = \lambda \omega \times \rho$
 $K_p = -\omega^2 \times \rho$

$$F_{sp}(\omega) = M_{xp}(-\omega^2 + i\omega\beta_m + k/n)$$

$$W_0^2 = \frac{k}{m}, \quad \frac{\beta}{m} = W_0/Q \qquad Q = \frac{m\omega_0}{\beta} = \frac{1}{2\xi^2} durping$$

$$|H| = \int H H^{\frac{1}{2}}$$

$$Arg(H) = ten^{-1} \left(\frac{Tm(H)}{p_e(H)}\right) \qquad \frac{\chi_0}{p_e(H)} = \frac{1}{m} \frac{1}{(\omega_0^2 - \omega^2) + i \omega \omega_0/Q} \omega_0 = \omega_0 \sqrt{1 - \xi^2}$$



Wapping a loop cround the system

"Sensors (+ readouts) have noise and sometimes have frequency response!"

"Actualors (+ drivers) have noise and sometimes have a frequency response + con saturate"

"Creating a sensor/actualor array = \$\$\$\$"

Fres =
$$F_{GND}$$
 + F_{ctrl} = V_{ctrl} = V_{ctrl} = V_{etrl} A

L. V_{ctrl} = V_{e} K

L. V_{e} = V_{e} C

L. V_{e} = V_{e} P

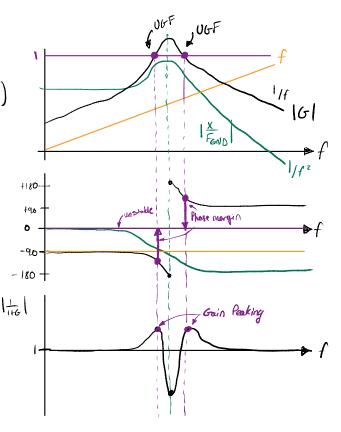
Fres = V_{e} C

Fres = V_{e} C

L. V_{e} =

$$F_{res} = \frac{1}{1 - G} F_{GND}$$

Note: GEC


$$\frac{X_{err}}{F_{GND}} = \frac{P}{1-G} = Loop Suppressed Plant$$

$$\frac{F_{cm}}{F_{GND}} = \frac{G}{1-G} \equiv Closed Loop Goin$$

Assume G= P. K

UGF = unity gain freq.

