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Improving earthquake monitoring for gravitational-waves detectors with historical seismic data

Sky Soltero

ABSTRACT

A remarkable level of isolation from the ground is required for Advanced gravitational-wave detec-

tors such as the Laser Interferometer Gravitational-Wave Observatory (LIGO) to function at peak

performance. These ground based detectors are susceptible to high magnitude teleseismic events such

as earthquakes, which can disrupt proper functioning, operation and significantly reduce their duty

cycle. As a result, data is lost and it can take several hours for a detector to stabilize and return

to the proper state for scientific observations. With advanced warning of impeding tremors, the im-

pact can be suppressed in the isolation system and the down time can be reduced at the expense of

increased instrumental noise. An earthquake early- warning system has been developed relying on

near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National

Oceanic and Atmospheric Administration (NOAA). The alerts can be used to estimate arrival times

and ground velocities at the gravitational-wave detectors. By using machine learning algorithms, a

prediction model and control strategy has been developed to reduce LIGO downtime by 30%. This

paper presents further improvements under consideration to better develop that prediction model and

decrease interruptions during LIGO operation.

INTRODUCTION

The two detectors that compose the Laser Interfer-

ometer Gravitational-Wave Observatory (LIGO) along

with Virgo, and GEO600 detectors form a global net-

work of gravitational wave interferometers. Keeping the

detectors in operating mode requires an exceptional level

of isolation from the ground so that the cavities can be

held in optical resonance and be capable of observing

displacements in space-time of less than one thousandth

of the diameter of a proton. Environmental disturbances

such as earthquakes can disrupt operating mode, desta-

bilize detectors and cause the detectors to fall out of

lock despite seismic isolation systems already in place

to minimize interfering effects. When the detectors have

fallen out of lock, where the control system cannot main-

tain optics at their stabilized positions, it can take many

hours to return to the locked state and normal opera-

tion. During the observation run (referred as O1), from

January 18, 2015 to January 12, 2016 operation was

disrupted 62 times at LIGO Hanford and 83 times at

LIGO Livingston due to earthquakes. Previous studies

have shown that by using an early-warning earthquake

system, relying on alerts provided by the U.S. Geolog-

ical Survey (USGS) and the National Oceanic and At-

mospheric Administration (NOAA), arrival times and

ground velocities could be predicted which have a direct

correlation with the operation status of the interferom-

eters (Coughlin et al. 2017). The higher the incoming

seismic velocities the more unstable the interferometer.

A strategy intended to maintain lock and suppress these

seismic disturbances early in the isolation system, at the

expense of sensitivity and increased noise, would notably

increase the interferometers’ duty cycle (Biscans et al.

2018). Consequently, an earthquake early warning ap-

plication named Seismon has been created to process

real-time alerts from the USGS containing specific char-

acteristic information about the earthquakes to provide

estimated arrival times of the seismic phases and seismic

amplitudes of the surface waves at the detector sites. By

implementing detector control configurations, it is pre-

dicted that 40 to 100 earthquake operation interruptions

could be prevented in a 6-month period.

OBJECTIVES

We aim to improve the algorithms of Seismon and

as a result reduce LIGO downtime and increase the

time the detectors are in observing mode. The alerts

received from USGS contain information on time, lo-

cation, depth, and magnitude of a specific earthquake

which is then used to predict ground velocities, arrival

time and amplitude of the various seismic phases at

the detector sites. Seismon initially relies on earth-

quake notifications from a worldwide network of seis-

mometers. P-waves (primary) traveling twice as fast

as S-waves (secondary) reach the seismic stations first,

thus providing the initial earthquake character estima-

tions. As more and more data is acquired solutions to
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the hypocenter and magnitude of the earthquake are

estimated and the solutions are sent to USGS’s Prod-

uct Distribution Layer (PDL). This ensures Seismon re-

ceives the most pertinent notifications. From there the

notifications are processed to predict the seismic wave

arrival time and the amplitude of the ground motion at

the detectors. Past earthquake records and the seismic

data at the detectors are also examined to predict how

the ground motion will affect the observatories. The

predicted amplitude and past earthquake data are com-

pared, with the difference being minimized by adaptive

simulated annealing algorithms to obtain solutions close

to the global minima. Lastly, the predictions are used

to create warnings delivered to the detectors contain-

ing the amplitude prediction, lockloss probability and

the anticipated earthquake arrival time at the observato-

ries. Seismon performance can be evaluated by record-

ing and analyzing the notification duration, accuracy

of predicted ground-motion amplitude, time-of-arrival

predictions and the detector lockloss predictions. Cur-

rent evaluations with the LIGO Observing Run 1 from

September 2015 to January 2016, show about 90% of

seismic events are within a factor of 5 of the predicted

ground velocity and within 3s of the final predicted ar-

rival time (Coughlin et al. 2017). Examining the times

lockloss occurred, it can be said that the detectors gen-

erally fall out of lock at ground velocities greater than

5 µm/s but at lower velocities the data is more com-

plex. Therefore, incorporating more ways of determin-

ing better lockloss predictions are of interest and would

demonstrate success in this project. We purpose to im-

prove the Seismon algorithm by incorporating more ma-

chine learning methods, broadening ground motion pa-

rameters and collecting more accurate data to enrich the

prediction models.

APPROACH

We intend on advancing the Seismon application by

improving predictions and acquiring more data of vari-

ous parameters of incoming teleseismic events. We will

test if the arrival time predictions can be improved by

machine learning algorithms. To enhance ground veloc-

ity predictions, we will explore broadening our data re-

sources and determine if we can acquire more data from

hundreds of other seismic stations around the United

States and the world. In addition, we would like to

discover if we can use moment tensor data to further

improve velocity predictions.

PROJECT SCHEDULE

I propose the following analysis and timeline for im-

proving the code base: 1. (week 1-3) Understanding

how magnitude and location play a role in different ve-

locity estimations. Running and understanding existing

machine learning infrastructure. 2. (week 4-6) Applying

existing methods to broader seismic datasets. Creating

a world grid with approximate earthquake velocities at

various sections of the earth’s surface based on historic

data. 3. (week 7-10) Employing machine learning algo-

rithms to improve on the existing algorithms.

1. RESULTS (IN PROGRESS)

To better understand the effects of earthquake magni-

tude and global location on arriving earthquake surface

velocities at the detectors, multiple plots using historical

data have been made. In Figure 1, earthquake velocities

are determined by dividing the distance from earthquake

origin to detector by the difference of P-surface wave

prediction times and earthquake times. These earth-

quake velocity magnitudes are then plotted at their ori-

gin in regards to latitude and longitude.

These plots show velocities reaching up to 16,000 m/s,

which is higher than expected for simple P-waves. To

explore the contributions of reflections internal to the

Earth, in Figure 2, the effective velocities of the paths

that include reflections (left) and those that do not

(right). These velocities are shown on a grid of depth

and degrees. While the plot on the right is in line

with expectations for P-wave velocities, the plot on the

left shows the contributions from reflections, leading to

much higher effective velocities (and therefore faster ar-

rivals). This result shows that the first arrivals of the

P-waves shown in Figure 1 derive from P-waves reflect-

ing in the Earth.

We now explore the velocities in real data measured

from seismometers at the Hanford and Livingston sites.

Figure 3 show the effective earthquake velocity, mea-

sured as the distance of the earthquake divided by the

difference of the peak ground velocity time and earth-

quake time. It shows a range of velocities from 2000

to 5000 m/s which is appropriate for surface wave ve-

locities dominating the time-series, as expected. We

include only the historical data with peak ground ve-

locities greater than 1µ/s.

To understand the frequency of earthquakes at certain

velocities, Figure 4 shows a histogram corresponding to

the data used for Figure 3. These plots show that the

majority of earthquakes have effective velocities between

2000 and 4000 m/s, as expected for surface waves. The

outliers are likely either body wave contributions or con-

tamination from other earthquakes.

With a large amount of historical data, featuring

earthquakes of magnitude 6 or higher a world map tak-

ing the averages of multiple known earthquake veloci-
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Figure 1. Magnitude of earthquake (EQ) velocities based on data using P-wave arrival times plotted at corresponding latitude
and longitude points. Data with peak ground velocities less than 1µ/s have been omitted. Displayed on the left is the plot for
Livingston data and on the right is the plot for Hanford data.
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Figure 2. Magnitude of Earthquake velocities based on data using P-wave arrival times plotted in accord to degrees and dept of
earthquake origin. Displayed on the left plot is the velocity without taking into account reflections. On the right plot reflections
are taken into account and more expected P-wave velocities are shown.
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ties crossing a portion of the grid was plotted. This was

completed with the hope of being able to show how the

earthquake velocity changes depending on what portion

of the earth it’s traveling through. Since the earthquake

data ranged widely in velocity values due to other fac-

tors, the map as a whole became too averaged overall

and did not provide any useful information. A smaller

map of the United States with the same purpose except

taking in only western hemisphere earthquakes was also

plotted in Figure 5. It’s assumed the velocities are still

being over averaged and further exploration to provide

more accurate data input as a way of producing a more

beneficial map are to be explored. Different experimen-

tation in machine learning also led to some favorable

results. Using a neural network, hundreds of thousands

of historic earthquakes surrounding regions local to the

United States, greater than magnitude 6 and occurring

only on land were used to train a model based on known

ground velocities. A random omitted portion of that

data was then tested upon to predict ground velocities

with a majority of the predictions falling under a factor

of two of the actual value. This factor of two is de-

termined by taking the difference of the predicted and

actual ground velocities and then dividing by the ac-

tual. A histogram displaying the amount of data falling

within these factors is displayed in figure 7. In figure

6, the neural network predicted ground velocities versus

the actual ground velocities were plotted against each

other for comparison. We expect to see the predicted

and actual ground velocities plotted following a slope of

1. The more fitting to the slope line shown, the more ac-

curate the predictions. For this particular plot the loss

in training was .2201. A graph showing the density of

where these points fall along the slope line is also shown.

To check the type of earthquake data being fed into

the model is accurate and useful in itself, a plot of dis-

tance versus time was produced. The three labeled lines

show where known rayleigh waves at different veloci-

ties would be represented in this graph. A correspond-

ing graph showing the particular density of where these

points fall along the slope line is also shown. Now that it

is known we can predict ground velocities under a factor

of two successfully further exploration in improving the

neural network, filtering more accurate training data,

and using the neural network to predict arrival times

themselves will be made.

INTERIM REPORT 2

WORK DONE

Some of the work I have done over the pass month

include making more accurate plots displaying earth-

quake surface velocities, experimenting with machine

learning scripts, and sorting data. I have experimented

with a collaborator’s machine learning script and at-

tempted to reproduce results that show satisfactory

predictions in earthquake ground velocities. The re-

sults weren’t as definite as expected so I tried testing

the model against the same data it was trained on and

the results did not improve. At the same time I made

a world grid that took in thousands of earthquakes

velocities detected at multiple seismometers and aver-

aged out the earthquake velocity for each grid space.

I experimented with changing parameters in the data

such as where the earthquake occurred, ground veloc-

ity speeds, seismometer locations and if the earthquake

and seismometer were located on land or not. After the

first machine learning script I then experimented with

a neural network learning script that produced much

more promising results. With this data I have made

various plots to show how the ground velocity predic-

tions compare to the actual ground velocity values.

PROGRESS

Some of the progress I have made so far have been

in the experimentation of machine learning scripts and

producing plots that display global and local earthquake

velocities more accurately . With one machine learning

script based on scores, I was not able to produce sat-

isfactory results so these observations are not what we

were expecting. However with a neural network I was

able to observe more desired results. With the neural

network script taking in earthquake data only from the

western hemisphere and occurring on land I was able to

predict ground velocities with the majorities of predic-

tions falling within a factor of two of the actual ground

velocities. The next step would be to further see if we

can improve the model by adding more layers and being

more specific with the training data inputted. Also I

have made progress in making grids of the world and

the United states that take in hundreds of thousands

of earthquake velocities and then averages the velocity

for that portion of the grid. By changing the parame-

ters of the earthquakes and the seismometers included

in the data the plot results differ vastly. Therefore I

was also able to continue to experiment with different

historical data and try to produce a grid that more accu-

rately displays velocities at different points in the grid.

CHALLENGES

Some of the challenges I have met so far are conceptu-

ally understanding the data for different seismic phases
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Figure 3. Magnitude of earthquake (EQ) velocities based on data using peak ground velocity gps time plotted at corresponding
latitude and longitude points. Data with peak ground velocities under 1e-6 have been omitted. Displayed on the left is the plot
for Livingston data and on the right is the plot for Hanford data.
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Figure 4. Percentage of different earthquake (EQ) velocities based on data using peak ground velocity gps time divided by
the distance from the detectors. In association with the above Figure 2 plots. Data with peak ground velocities less than 1µ/s
have been omitted. Displayed on the left is the plot for Livingston data and on the right is the plot for Hanford data.
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and how they affect the earthquake velocity that we are

concerned about and the detectors. Additionally, un-

derstanding the neural network script and the improve-

ments that could be added to the network is also a sub-

ject to study further. Some of the challenges I anticipate

are creating more complex graphs due to the processing

of data inputted.

GOALS

My research goals for the rest of the summer is to

continue to improve the neural network model and ap-

ply the model to arrival times successfully. I would also

like to understand how to incorporate and filter more

earthquake data for the training model so that it may

be trained as accurately as possibly. Lastly, I would still

like to experiment with producing more accurate world

and United States grids that display averaged earth-

quake velocities for a specific portion of that grid. These

goals have changed slightly. I still want to predict arrival

times as accurately as possible but I’ve learned having

a greater understanding of type of earthquake data and

how to filter it may be of importance to bettering the

neural network model.
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Figure 5. United states grid representing various averaged earthquake velocities over numerous grid portions. The earth-
quake velocity data representing this grid were taking from earthquakes higher than magnitude 6, only within the areas on or
surrounding the United States and those earthquakes which occurred on land.

Figure 6. Ground velocity predictions versus Actual ground velocities is displayed on the left plot. The closer the points
displayed are to the trend line of 1, the more accurate the prediction. A density plot of the same graph for easier visualization
of data is shown on the right.
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Figure 7. A histogram displaying the counts of ground velocity predictions within a factor of error representing the same data
corresponding to figure 7.
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Figure 8. The distance versus arrival times of the input data used to train the neural network model and produce Figure 6
graphs. The solid slope lines represent different rayleigh wave speeds commonly observed.A density plot of the same graph for
easier visualization of data is shown on the right.


