Modeling and simulations of amorphous coatings

GWADW, 2018 May 15, 2018 Girdwood, Alaska

LIGO-G1801021

Kiran Prasai Stanford University prasai@stanford.edu

Overview

The optical coatings in the current LIGO mirrors use amorphous materials

Reducing thermal noise comes down to reducing two-level systems that are intrinsic to amorphous coatings

- Some successes are coming from:
 - Choice of coating materials
 - Elevated temperature deposition: mainly in a-Si
 - Post-deposition annealing
 - Doping material/percentage
 - Nano-layering

TLS in a-Ta₂O₅ Trinastic, PRB **93**, 014105 (2016)

Plan of this talk

Zirconia-doped-Tantala Insights from structural characterization

Amorphous Si
Vapor deposition simulations

Zirconia-doped-Tantala

> Measured loss at room temperature decreases with annealing at higher temperatures

Source for both figures: G1800585-v3

➤ Doping with Zirconia suppresses crystallization: makes higher temperature (up to 900 C*) annealing possible

*According to G1800585-v3

Pair Distribution Function (PDF)

Pair Distribution Function: Average position of atoms

Figure: 2D Crystal for illustration

- Connecting link between experiments and modeling
- Experimentally measured as Grazing Incidence Pair Distribution Function (GIPDF)

$$G(r) = \frac{1}{(2\pi)^3 \rho_0} \int_0^\infty 4\pi Q^2 F(Q) \frac{\sin Qr}{Qr} dQ$$

Figure source: https://en.wikipedia.org/wiki/Grazing incidence diffraction

Figure source: http://www.mesostructures.uni-bayreuth.de/en/research/pair-distribution/index.html

Measured PDF of Zirconia-doped-Tantala

X-Ray GIPDF measurement on 35% Zirconia-doped-Tantala

SLAC National Accelerator Laboratory, October 2017

Measured PDF of Zirconia-doped-Tantala

X-Ray GIPDF measurement on 35% Zirconia-doped-Tantala

SLAC National Accelerator Laboratory, October 2017

- > 1064 atoms in all models,
- ➤ All results are averages over 100 models
- > Density inferred from potential (Density measurements are underway!!)
- ➤ Fitting and minimization method: **FEAR**, Pandey, Biswas and Drabold, Scientific Reports **6:33731**, 2016

Atomic models fitted to x-ray structure factor S(q)

Ball and Stick representation of final model

Models track the changes in experimental PDF very well

Partial pair correlation functions

Effect of annealing in Metal-Metal correlation

No major change in O-O correlation upon annealing.

No major change in M-O correlation upon annealing.

Bond angle distribution shows changes in M-O-M angles

Loss mechanism hypothesis:

(Needs validation from two-level system analysis)

Low barrier TLSs increase upon annealing

decrease upon annealing

Source of both plots: G1800585-v3

(More recent loss data exists!!)

Next steps:

- Compute two-level systems and calculate mechanical loss (Team @ University of Florida is working on it!!)
 - See if the loss hypothesis holds.
- > Search for dopants that can frustrate the two-level dynamics
- ➤ Continue study how ZrO₂ doping inhibits crystallization in Ta₂O₅-Initial results from caloric curve analysis consistent with observed frustration of crystallization by ZrO2 doping

Vapor deposition simulations

> Vapor deposition simulations mimic the coating deposition process

Figures from: Nature Mater. 12, 94 (2013)

➤ Aim: simulations can identify advantageous materials, dopants, substrate temperature, deposition rate

Amorphous silicon

Why choose a-Si for growth simulation?

- **▶** Ideal test case for vapor deposition simulation
 - Clear evidence of reduction in loss from experiments:
 E-beam deposited a-Si shows large drop in internal friction with high T_{substrate} deposition
 - Single atom type
 - Interatomic potentials for a-Si are more mature than those for oxides

Figure reference: Liu et al, PRL **113**, 025503 (2014)

Amorphous silicon growth simulations

Amorphous silicon growth simulations

Sweet spot for T_{substrate}: 85% of T_{glass}?

Lower Energy/atom → More stable film -4.536 -4.54Energy/atom [eV] -4.544 -4.548 -4.552 -4.556 700 800 900 1000 1100 1200 600 Substrate temperature [K]

Binary Lennard-Jones system

Source: Nature Materials 12.2 (2013)

Next steps: growth simulations

- Employ more accurate potential: Machine-learning based potentials are now available which are accurate as first principle calculations but scale ~N in computational cost (*Bartók, Kermode, Bernstein and Csányi, arXiv:1805.01568*)
- Characterize models: voids, density profile, rings distribution, twolevel systems and mechanical loss
- Extend the simulations to oxides
 To model doping, substrate temperatures, mechanical loss and identify lower loss coatings

<u>Summary</u>

- X-ray scattering experiments have shown clear trends of changes in short and medium range order in the coatings with annealing.
- We have computer models of coatings that capture the changes seen in samples with annealing.
- Models indicate that strained M-O-M bonds are being eliminated because of annealing. We are awaiting further results from two-level system calculations
- Preliminary results from vapor deposition simulations of a-Si show that we can model the dependence of mechanical loss on substrate temperature.
- More works are being done to translate this knowledge into predicting the unknown: better dopants, ideal substrate temperature etc.

Center for Coatings Research

