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Overview

» The optical coatings in the current LIGO mirrors use
amorphous materials

» Reducing thermal noise comes down to reducing

A

two-level systems that are intrinsic to amorphous coatings

» Some successes are coming from:
" Choice of coating materials
= Elevated temperature deposition: mainly in a-Si
= Post-deposition annealing
* Doping material/percentage
= Nano-layering
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Trinastic, PRB 93, 014105 (2016)
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Plan of this talk

» Zirconia-doped-Tantala
Insights from structural characterization

» Amorphous Si
Vapor deposition simulations
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Zirconia-doped-Tantala

» Measured loss at room temperature decreases with annealing at higher temperatures
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Source for both figures: G1800585-v3

» Doping with Zirconia suppresses crystallization:

room temp deposited Zr:Ta205
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Frequency (kHz)

makes higher temperature (up to 900 C*) annealing possible

*According to G1800585-v3
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¢ As deposited loss

e Annealed loss
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Pair Distribution Function (PDF)

» Connecting link between experiments and modeling

> Pair Distribution Function:

Average position of atoms
» Experimentally measured as
Grazing Incidence Pair Distribution Function (GIPDF)
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Figure: 2D Crystal for illustration - .
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Figure source: https://en.wikipedia.org/wiki/Grazing_incidence_diffraction
Figure source: http://www.mesostructures.uni-bayreuth.de/en/research/pair-distribution/index.html
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Measured PDF of Zirconia-doped-Tantala
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X-Ray GIPDF measurement on 35% Zirconia-doped-Tantala

SLAC National Accelerator Laboratory, October 2017
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Measured PDF of Zirconia-doped-Tantala
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X-Ray GIPDF measurement on 35% Zirconia-doped-Tantala

SLAC National Accelerator Laboratory, October 2017
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Modeling of Zirconia-doped-Tantala

Random coordinates
Density= 7.28 gm/cm3

|

Random collection

X-ray scattering, G(r) or S(q)
(SSRL, Oct 2017)

|

RMC fitting to

2-body Empirical potential,
HP Cheng Group, UF

N iterations

> Energy

of atoms

» 1064 atoms in all models,

A 4

X-ray str. factor | -

» All results are averages over 100 models
» Density inferred from potential (Density measurements are underway!!)
» Fitting and minimization method:

FEAR, Pandey, Biswas and Drabold, Scientific Reports 6:33731, 2016

Minimization

“The model”
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Modeling of Zirconia-doped-Tantala

Atomic models fitted to x-ray structure factor S(q)
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Modeling of Zirconia-doped-Tantala
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Models track the changes in experimental PDF very well
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Modeling of Zirconia-doped-Tantala

No major change in O-O correlation

Partial pair correlation functions ]
P upon annealing.
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Modeling of Zirconia-doped-Tantala

41 As Deposited - TaO-Ta 4

| Annealed

A simplified picture:

M
Annealing
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Bond angle distribution shows changes in M-O-M angles
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Modeling of Zirconia-doped-Tantala
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Loss mechanism hypothesis: M
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Modeling of Zirconia-doped-Tantala

Next steps:

» Compute two-level systems and calculate mechanical loss
(Team @ University of Florida is working on it!!)

See if the loss hypothesis holds.
» Search for dopants that can frustrate the two-level dynamics
» Continue study how ZrO, doping inhibits crystallization in Ta,O«-

Initial results from caloric curve analysis consistent with observed
frustration of crystallization by ZrO2 doping
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Vapor deposition simulations

» Vapor deposition simulations mimic the coating deposition process
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Figures from: Nature Mater. 12, 94 (2013)
» Aim: simulations can identify advantageous materials, dopants, substrate
temperature, deposition rate
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Amorphous silicon

Why choose a-Si for growth simulation?

m |deal test case for vapor deposition simulation

= Clear evidence of reduction in loss from experiments:

E-beam deposited a-Si shows large drop in internal
friction with high T, deposition

= Single atom type

" |nteratomic potentials for a-Si are more mature
than those for oxides
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Amorphous silicon growth simulations
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Amorphous silicon growth simulations

Sweet spot for T

° Tke/Enn ",

® Vapour-deposited
® Ordinary
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Binary Lennard-Jones system

Source: Nature Materials 12.2 (2013)
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Next steps: growth simulations
» Employ more accurate potential: Machine-learning based potentials
are now available which are accurate as first principle calculations but
scale “N in computational cost (Bartok, Kermode, Bernstein and
Csanyi, arXiv:1805.01568)

» Characterize models: voids, density profile, rings distribution, two-
level systems and mechanical loss

» Extend the simulations to oxides
To model doping, substrate temperatures, mechanical loss and
identify lower loss coatings

19
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Summary

= X-ray scattering experiments have shown clear trends of changes in short and medium range
order in the coatings with annealing.

= We have computer models of coatings that capture the changes seen in samples with annealing.

= Models indicate that strained M-O-M bonds are being eliminated because of annealing. We are
awaiting further results from two-level system calculations

= Preliminary results from vapor deposition simulations of a-Si show that we can model the
dependence of mechanical loss on substrate temperature.

= More works are being done to translate this knowledge into predicting the unknown:
better dopants, ideal substrate temperature etc.

20
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validate structure modelling

| structural characterization
interpret scattering data \

MD simulation

Predict:
low 7, mat'ls
advantageous dopants
optimum rate, energy,
temperature, ...

correlate structural features
vs loss spectra

\

Film deposition |¢— Loss measurement
T empirical optimization

Optical measurements
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