PHOTONS+SPACETIME=AWESOME

Kelly Holley-Bockelmann Vanderbilt University and Fisk University, Chair of NASA LISA Study Team <u>k.holley@vanderbilt.edu</u>

So this happened:

Which, ~150 Myr later, did this...

and changed EVERYTHING!

Over 1/3 of astronomy community joined in to follow the event

Swopes 1m

Blanco 4m

...and at different wavelengths...

 $\mathsf{Radio} - \mathsf{VLA}$

Credit: NASA/CXC/McGill University/J. Ruan et al.

and still observe it today.

Whoa...a whole new way to think about short GRB ejecta!

Since prompt electromagnetic counterparts are **so** valuable...the hunt is on for counterparts to black holes

just kidding

Doppler modulation of minidisks may yield an Xray chirp as a precursor

Magnetic fields carry Poynting flux along the newly-formed jet

Baker et al. 2017

(W)

bq

Magnetic field lines at the pole

Poynting vector

Which could translate into a prompt increase in photon emission post merger

Lensing coronal synchrotron emission close to the BBH may yield a sharp **drop** in luminosity post merger

Baker et al 2017

While the theoretical and technological dust settles, let's think beyond electromagnetic counterparts

Astronomers! For objects with orbital periods of seconds — hours... Imagine what you could do with:

> Masses – 1% Distances – 10% or better Spins – 1-10% Spin directions – 10 degrees Sky localization – 10 deg² (Sometimes down to ~ arcmin) Eccentricity – 1%

Large UV Optical IR mission LUVOIR – 15m

LET'S COMBINE THE EXQUISITE RESOLUTION OF LUVOIR WITH LISA DATA

LUVOIR CAN PEER INTO LISA HOST GALAXIES, EVEN FOR IMBH/SEED BH HOSTS

LISA+LUVOIR can help understand co-evolution of galaxies and SMBHs across cosmic time

Hubble spectroscopically confirms farthest galaxy to date

– accurate black hole mass measurements up to $z\sim 8$ for $10^5 - 10^7 M_{\odot}$

– connecting SMBH birth/growth during the dark ages

- the type of galaxy for SMBH hosts

– BH occupation fraction up to z^8 and for Mgal=small

- find evidence of binary black holes (enlist time-domain?)

look for recoiling AGN (can get 3-d space velocity) – maps to
SMBH spin and mass ratio before SMBH merger

 measure galaxy merger rate to constrain SMBH merger dynamics (esp. @ low mass end)

- hypervelocity stars from 3-body scattering out to Coma?

 pulsar planets, nearby highly eccentric and/or hot Jupiter planets (regardless of inclination)

 nuclear structure to connect EMRIs to tidal disruption events, and to constrain core scouring

 observations of compact binaries to better understand common envelope phase

- BAO in the dark ages, but need map from BBH to galaxies...

LUVOIR can help maximize LISA science, even without electromagnetic counterparts!

Lynx – high resolution X-ray mission

The combo of high resolution and deep sensitivity make it a game-changer

Lynx can help understand co-evolution of aalaxies and SMBHs across cosmic time

Hubble spectroscopically confirms farthest galaxy to date

Pan-Starrs PSO J334.2028+01.4075

Periodicity caused by 542+/- 15 day orbit of a – 10¹⁰ solar mass binary at 0.05<q<0.25 @ z=2.06 – separation of ~10 R_s!! Stay tuned: By 2028, LSST should find ~10⁴ BBH candidates

