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Angular Sensing and Control

* The main optics of the aLIGO detectors are suspended
- 2 stages of seismic isolation + 4 stages pendulum
— PITCH = 3-5 YAW motion

* The cavities have to be actively aligned:
— To maximize the power build-up in the cavities

— To minimize the geometric losses
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D. Martynov [1]
aLIGO arm geometry:

angular axis motion is x10 the angular motion of the test masses
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Angular Sensing and Control

81

e Radiation pressure creates additional torque: T = Kopt(gl,gz,L,P) 0
2

* Each arm cavity can therefore be treated as a unit with two orthogonal modes:

o,  Hard Mode (Rotation) S 6. Soft Mode (Translation) 6,

Seymour [3]

4 modes of angular motion: CHARD, DHARD, CSOFT, DSOFT

* During 02, the intra-cavity power was about 105-110 kW
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Angular Sensing and Control

* Alignment signals, acquired with dedicated sensors, are filtered and fed-back to the mirror
coil-magnet actuators to keep the mirrors aligned

 Three types of sensing:
— Wavefront sensors: demodulated signals from RF sidebands (9, 36 and 45 MHz)
— Quadrant photodiodes: beam position

— Dithering: angle to length coupling

* 2x9 angular loops
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ASC performance

e ASC should maintain a residual angular motion of the arm cavity mirrors
at ~ 1 nrad RMS in order to meet the aLIGO sensitivity target [2!

e Control up to few Hz is challenging and directly impacts the interferometer:

— Stability: Duty cycle reduced by the lock losses
* Impact from environmental conditions
* Radiation Pressure instability

— Noise: Sensitivity compromised by the coupling to DARM
e ASC can couple linearly or bi-linearly to length
* Limiting the low frequency of the observing band
* Searches impacted by the glitches
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Power increase in the arms

For the next runs of ALIGO, increase of the power in the arms:
But the plant changes with power:

— shiftin the resonance frequency

— The overall gain is decreasing
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Good agreement between measurements and model = we know the plant
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Power increase in the arms

Stable at all frequencies but we have to:

* tune the filters for each power or

* Design filters stable for the power range or 50

57_(§disp) &
* make the plant power independent : @

— digitally compensate for N /
the power dependent plant Sidles-Sigg torque 1.
— - See Hang talk \

ASC servo

50(()sens)
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Power increase in the arms

However we see an unforeseen 0.5 Hz soft radiation pressure oscillation:
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Power increase in the arms

0.5 Hz soft radiation pressure oscillation:
* First seen at LIGO Hanford in 2015, then at LLO
* From a spurious dependence of circulating power on the beam spot position

Mechanism: Radiation pressure torque
from miscentered beams:

DC miscentering beam spot motion from HARD/SOFT modes
= -4.8x10%[m/rad]for CHARD;
=2.1x103 [m/rad]for SOFT.

Power fluctuations: dP/d6

Longitudinal force cross couples
—> changes radiation pressure to pitch because suspension fibers
— moves length attach above center

Suspension point

® Center of mass
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Power increase in the arms

0.5 Hz soft radiation pressure oscillation can be suppressed or reduced:

— Controlling CSOFT pit using the transmission of the arms

— Optical lever damping

— Changing coupling from
spot position to circulating power

— Feedback to laser intensity
to stabilize arm powers
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Power increase in the arms

e Tested solution at LLO:
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Up to date: 14 hours of lock at LLO with ~ 170 kW in the arms

We need to reach stability at 50 W input = seems achievable
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Impact of the angular performance in 02
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Design expectations: factor 10 below DARM [3]
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Noise

Challenge for the control:

— control of the arms up to few Hz

— Then aggressive cut-off to minimize the impact on DARM

Noise sources :

— seismic motion
— longitudinal control
— thermal drifts
— sSensor noises
— radiation pressure
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Excess noise

e Excess noise in the CHARD sensors correlated to table motion:
— Experienced at both sites

Mitigation strategies:

. Reduce the noise

* Reduce the coupling

— feeding forward the motion of the HAM1 table K‘m

Sensors for CHARD

— Blendin
g on HAM1 table

* LLO worked on reducing the noise and then the coupling via FF
* LHO has the same problem but also a solution to reduce the coupling

- to be tested soon at LLO

Pele [6]
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SRM control

Loop does not reliably work:
— Very slow loop
— we can sometimes close it, sometimes not

Sensing issue:

— Sensing matrix measurements indicate that the coupling should be better with
the new SRM but it is not the case

— Pollution by high order modes
— Sensor sensitive to beam spot position

New scheme:
— Use an additional sensor at LLO? = but needs DC centering work
— New frequency (72 MHz) to be tested at both observatories soon.

Kasprzack - GWADW May 2018 15



Issues to solve and Conclusion

* We have several issues ahead to solve:

— Oscillation shifting down with higher circulating power
— Sensing noise

— Cross coupling

— Loop control for SRM

* Angular coupling is still one of the main limits at low frequencies for the detectors
* Investigations are on-going to reduce the noise/coupling
* New challenges ahead for the future runs:

How do we plan for them : Better/More sensors? Optimal control ? ...
We need more work force in this topic
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Lock at 40 W — Angular motion suppression
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REFL WFS noise

A coupling similar to L1 is observed at H1 for REFL WFS

H1 CHARD P coherence with HAM1 Z
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