Virgo status

From O2 to O3 and beyond Focusing on the detector

B. Mours (LAPP-Annecy) for the Virgo Collaboration GWADW - May 12, 2018

O2 Detector Summary

- ▶ 85 % duty cycle
 - Longest lock segment: 69 hours
- ▶ Mean BNS range: 26.5 Mpc
 - online 25.6 Mpc
- Noise budget
 - Many bumps and line and some extra broadband noise
 - Scattered light, some sensing noise, unknown....

From O2 to O3

Comm.

12 months

Comm.

Upgrades

Strategy:

Reserve commissioning time

- Limit the number of upgrades
- Target sensitivity for O3: 60 Mpc
 - Main benefit should come from putting back the monolithic suspension
 - Removing the steel wire thermal noise from noise budget gives a 20 Mpc range increase
 - Theoretical limits: 100 Mpc @13W, no squeezing

Monolithic suspension re-installation

- Vacuum upgrade for dust protection
- AEI squeezer
- High power laser
- Newtonian noise sensors test installation

Comm.

03

 September
 October
 November

 Gen. commissioning
 SDB1/PR
 TCS and input power increase

Post O2 commissioning

SDB1 checks, PR and DET towers baffles installation, SPRB/SWEB suspensions re-tuning

Main topics

- Control filters optimization
- ENV: noise injections and noise sources identification
- Interventions in SDBI and PR towers
 - Baffles installed
 - Some MMT optics cleaned/replaced
- SUSP: GIPC now fully engaged
- ISC:AA in full bandwidth using quadrants (@ 56 MHz)
- TCS: DAS optimized and tested
- ISYS: ITF input power increased to 26.5 W

- Tests with 14, 17, 20 and 26 W
 - O2: I3W at the ITF input
- No major issues
 - Done in a few days
 - No need to use TCS
 - Sideband gain reduced
 - ▶ Compatible with simulation
 - But coupling to the ITF degrades
 - ▶ 1.57 power increase in the arms instead of 1.9
 - No time spent on beam matching
 - No parametric instabilities (so far...)
 - Modes density smaller than in LIGO and grouped

Laser power increase

Main results of the post-O2 commissioning

- ▶ Limited BNS range improvement
 - Maximum value reached around 30 Mpc
 - Mean O2 range: 26.5 Mpc
- Glitch rate much reduced

Vacuum chamber upgrades

1) Venting circuit separation

82) Scroll pump substitution

Laser improvement

- ▶ 70 W amplifier replaced by a 100 W
 - Max input power in the ITF: around 50 W
 - 100 W fiber laser tests ongoing at Nice
- New pre-mode cleaner
- External Injection Bench "suspended"

Squeezing

- ▶ AEI squeezer box installed at Virgo
 - About 10 dB of squeezing
- Integration
 - Extra clean air, cabling, DAQ,...
 - Telescope, auto-alignment alignment
 - Lock main squeezer laser to AdV laser
 - Detection system modifications
 - New Faraday isolator, extra flange...
- Maximum possible HF gain: 4.7 dB

	Loss Mechanism	Present (O2)	Expected (O3)
L1	Imperfect OPO Escape Efficiency	1 %	1%
L2	Pick-off on SDB1	1.5 %	1.5%
L3	Detection Faraday	2×7%	$2 \times 1.5\%$
L4	Injection Faradays	4×1.5 %	4×1.5 %
L5	OMC throughput	3.9%	3.9%
L6	ITF to OMC losses	5.4%	4.5 %
L7	Mode matching squeez-OMC	8%	8%
L8	Photodiodes QE	7%	1%
L9	Arms cavity losses	2.7%	2.7%
L10	Other	6%	6%
	TOTAL	44%	32%

Newtonian Array

- Array of 38+9 sensors installed at west end building
 - Two weeks of data collected in Jan-Febio-18
 - Analysis on going
 - Sound NN as large as seismic NN
 - ▶ High sound level in Virgo building

The first recovery after North Arm upgrade

- Two weeks of recovery; manage to lock the full ITF
- Sensitivity reached a few hours after the full relock: 19 Mpc
 - New violins modes well visible
 - ▶ Losses larger than nominal but should not limit the O3 sensitivity

- ▶ Took a bit longer than expected...
 - Arm valves reopen on March 19
 - Other activities than just ITF recovery
- ▶ Back in "low noise 3" on May 2nd,
 - First BNS range: 19 Mpc
- ▶ Reach up to 25 Mpc
 - Preliminary calibration
- First noise budget
 - Touching steel wires thermal noise?
- Back to commissioning
 - No major shutdown scheduled before Q3

The second recovery

Commissioning toward O3

- Commissioning
 - Usual noises/glitches reduction
 - Robustness
 - Commissioning of the squeezer
 - Power increase
 - Max power for O3: 50W
 - □ Not critical for the BNS range...
- Engineering Runs
 - Once per month over a weekend
 - Long ER priori O3
- ▶ O3 start early 2019; aligned with LIGO

Beyond O3: AdV+

- Could we do better than AdV?
- ▶ AdV+ proposed to the EGO council last December
- A two steps approach:
 - For O4: Frequency dependent squeezing
 - Add a filtering cavity
 - For O5: Reduce the coating thermal noise
 - Larger beam: Four test masses or just the end test masses?
 - Improved coating
- More on the AdV challenges in Jerome's talks

AdV+ phase I

- Complete the AdV program:
 - 200 W laser; I25W at the ITF input
 - Signal recycling → I20 Mpc
- Frequency dependent squeezing
 - →150 Mpc
 - New filtering cavity

Newtonian noise cancelation → I 60 Mpc

AdV+ Phase 2

- Larger mirrors
 - Diameter: 550 mm, thickness: 200 mm, mass: 105 kg (?)
 - Scenario I: ETM-only → 200 Mpc
 - Scenario 2: full upgrade → 230 Mpc
- Coating improvements
 - If factor three reduction in CTN:
 - Scenario I: ETM-only → 260 Mpc
 - Scenario 2: full upgrade → 300 Mpc
- Many challenges and activities
 - Grand Coater upgrade
 - Vacuum, infrastructure
 - Payloads and superattenuators
 - Aberration control

AdV+: Tentative timeline

Five year plan for observational runs, commissioning and upgrades

Note: duration of O4 has not been decided at this moment

Summary

- Main AdV upgrades for O3 are done
- Back to commissioning mode
 - Several months of commissioning foreseen
- AdV+ plan setup for after O3
 - Cost: up to 30 ME for full test masses upgrade
 - A very challenging phase II ...
 - Hope to get some approval during the June EGO council meeting