

Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO

M. Coughlin

Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO

M. W. Coughlin, J. Harms, J. Driggers, D. J. McManus, N. Mukund, M. P. Ross, B. J. J. Slagmolen and K. Venkateswara

September 4, 2018

Newtonian Noise

Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO M. Coughlin

Newtonian noise or "gravity-gradient noise" arises from fluctuating seismic fields and atmospheric disturbances such as pressure and temperature fluctuations leading to a direct gravitational force on the test masses.

- LIGO Hanford \rightarrow Caltech/Hanford/GSSI.
- Virgo WEB \rightarrow Poland/GSSI.
- Homestake (3D array) \rightarrow Caltech/Minnesota.
- Seismic NN modeling \rightarrow Nikhef/GSSI.
- Atmospheric NN modeling \rightarrow APC/GSSI.

I am only worried about the seismic field portion in the following.

LHO Corner Station Array

Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO

LHO Corner Station Array

Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO

M. Coughlin

900

5/16

Seismic Velocity Histogram

Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO

Coherence of the array (all possible pairs)

Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO

Tiltmeters?!?

Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO

M. Coughlin

- Single horizontal sensor beneath test mass: Seismic sensors are sensitive to Rayleigh waves... and Love (shear) waves (non-NN contributing).
- Multiple vertical sensors: Requires an array some distance from test-mass with relatively weak correction with test-mass acceleration
- Single tiltmeter beneath test mass: Not sensitive to Love waves so... no problem (theoretically).

Optimal Tiltmeter Subtraction

Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO

M. Coughlin

・ロト ・回ト ・ヨト ・ヨト

900

Actual Tiltmeter Subtraction

Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO M. Coughlin

Residual Spectrum / Original Spectrum

Wiener Filter Bode Plots

Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO

Tiltmeter-DARM Transfer Function

Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO

M. Coughlin

15 / 16

Other to-dos and conclusions

Implications of dedicated seismometer measurements on Newtonian-noise cancellation for Advanced LIGO

M. Coughlin

Highlights:

- We used dedicated measurements at the LIGO Hanford site to predict NN cancellation levels.
- We showed how we were able to achieve significant subtraction in line with expectations based on correlation measurements.
- We showed that significant subtraction is achievable with only a few seismometers.

Future extensions:

- Calculation of optimized arrays in inhomogeneous seismic fields without constraints on seismometer locations.
- Calculate the best sensor locations from correlation measurements (to reach ultimate cancellation limits for a given number of sensors)

• Devise the strategy to optimally pick sensors in a large underground array.